
Helios: Efficient Distributed Dynamic Graph Sampling
for Online GNN Inference

Jie Sun1∗, Zuocheng Shi1∗, Li Su2, Wenting Shen2, Zeke Wang1,3
Yong Li2, Wenyuan Yu2, Wei Lin2, Fei Wu1,3, Bingsheng He4, Jingren Zhou2

1 Zhejiang University, China; 2 Alibaba Group; 3 Shanghai Institute for Advanced Study of Zhejiang University, China
4 National University of Singapore, Singapore

Abstract
Online GNN inference has been widely explored by appli-
cations such as online recommendation and financial fraud
detection systems, where even minor delays can result in
significant financial impact. Real-time dynamic graph sam-
pling enables online GNN inference to reflect the latest graph
updates in real-world graphs. However, online GNN infer-
ence typically demands millisecond-level latency Service
Level Objectives (SLOs) as its performance guarantees, which
poses great challenges for existing dynamic graph sampling
approaches based on graph databases. The issues mainly
arise from two aspects: long tail latency due to imbalanced
data-dependent sampling and large communication over-
head incurred by distributed sampling. To address these is-
sues, we propose Helios, an efficient distributed dynamic
graph sampling service to meet the stringent latency SLOs.
The key ideas of Helios are 1) pre-sampling the dynamic
graph in an event-driven approach, and 2) maintaining a
query-aware sample cache to build the complete K-hop sam-
pling results locally for inference requests. Experiments on
multiple datasets show that Helios achieves up to 67× higher
serving throughput and up to 32× lower P99 query latency
compared to baselines.

CCS Concepts: • Computer systems organization →
Real-time systems; • Computing methodologies→Ma-
chine learning; Distributed algorithms.

Keywords: Graph Neural Network, Distributed System, On-
line Inference

* Equal Contribution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1443-6/25/03
https://doi.org/10.1145/3710848.3710854

1 Introduction
Graph Neural Networks (GNNs) [24, 27, 39, 47, 69, 89] learn
graph vertex representations by aggregating their multi-hop
neighbor information, including both the structure and at-
tribute data, which are further utilized in handling inference
requests of various machine-learning tasks including node
classification and link prediction.

Online GNN inference is increasingly gaining popularity
for many applications that depend on real-time decision-
making [6, 56, 73, 76, 82]. This is because online GNN in-
ference can reflect the dynamic structure and attributes
of real-world graphs. For instance, GNNs are extensively
used [6, 55, 56, 73] to identify suspicious scam accounts in
financial risk management by aggregating neighborhood
information of an account through various relationships,
i.e., the transaction between an account and its neighboring
accounts. However, training GNNs on large-scale graphs is
usually at intervals of hours or days, particularly in produc-
tion environments [19, 98]. Performing inference using the
offline-learned vertex embedding creates a large window of
opportunity for fraudsters to escape and causes significant
financial loss. Therefore, many works [6, 51, 73, 76] explore
online GNN inference to solve this issue by incorporating
real-time changes in the graph’s structure, as well as the
features of its vertices and edges, into the inference represen-
tations. For instance, Amazon [6] proposes a fraud detection
solution based on online GNN inference to extract the latest
transactions involving the target account and features of
relevant accounts as inference inputs and feed these inputs
into an offline-trained GNN model to assess the likelihood
of the target account being involved in a fraud.
Online GNN inference service typically requires a chal-

lengingmillisecond-level latency Service Level Objective (SLO),
e.g., 100ms in a recommendation system for social media
service [31]. Neighbor sampling [39] is widely adopted in
industrial applications [19, 86, 98] to scale GNN training and
inference to large-scale graphs (e.g., graphs with billions
edges [98]). For online GNN inference, real-time neighbor
sampling on the dynamic graph guarantees that the inferred
vertex representation can accurately reflect real-time graph
updates [6, 50, 51]. Existing approaches [6, 51] leverage graph
database systems [5, 8, 28, 50, 77] for dynamic graph storage
and real-time neighbor sampling. However, we identify that
dynamic graph sampling takes over 90% latency of GNN

https://doi.org/10.1145/3710848.3710854


PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jie Sun et al.

1 ## Input: a 2-hop query

2 g.V('User', ID).alias('Seed')

3 .OutV('Click').sample(2).by('Random')

4 .OutV('Co-purchase').sample(2).by('TopK').values

5 ## Decomposed into two distinct one-hop queries:

6 Q1: V('User', ID).outV('Click').sample(2).by('Random')

7 Q2: V('Item', ID).outV('Co-purchase').sample(2).by('TopK')

Figure 1. 2-hop Query Decomposition. Figure 2. Pre-sampling Driven by Graph Update Events.

inference and consistently surpasses 100ms in existing ap-
proaches (see Figure 4(a)), which makes it hard to fulfill the
stringent latency SLO due to two severe issues:
(1) LongTail Latency due to ImbalancedData-dependent
Sampling. Sampling strategies like TopK and EdgeWeight
require traversing all the neighbors of a vertex to obtain
the samples. The amount of data access and computation
required by such sampling operations can vary significantly
among different seed vertices (see Figure 4(c)), due to the
inherent distribution skewness in real-world graphs [33, 38].
Consequently, the P99 latency easily surpasses the average
latency over 150 ms, as shown in Figure 4(b).
(2) Large Network Communication Overheads. To han-
dle large-scale graphs and high-throughput inference re-
quests, graph databases such as NebulaGraph [77] and Tiger-
Graph [28] support storing and sampling the graphs in a
distributed manner. However, distributed multi-hop sam-
pling typically requires repeatedly sampling vertices across
multiple machines. The costs of network communication
increase with the increasing number of sampling hops (see
Figure 4(d)). Although graph databases like Neo4j [8] can
utilize the query cache to reuse results of previously exe-
cuted queries, the continuous updates in dynamic graphs
render most query caches unavailable, significantly limiting
the cache hit ratio.
In this work, we propose Helios, an efficient distributed

dynamic graph sampling service to tackle the challenging
latency SLOs for online GNN inference. Our key insight is
that during GNN inference, the pattern of the graph sampling
query of a given GNN model, i.e., sampling fan-out number,
hop number, and sampling strategy, is determined by how
the model is trained [39, 86, 89, 97]. This is because a GNN
model trained with a specific sampling pattern learns from
the corresponding sampled data distribution. If the sampling
pattern varies significantly during inference, the model’s
performance can degrade and become unstable1 due to shifts
in data distribution [97]. As such, the key idea is to pre-
sample the dynamically updated graphs according to the
given sampling query and continuously push the complete
multi-hop neighborhood samples of each seed vertex to the

1Many online applications like online recommendations [16] require stable
service quality, i.e., accuracy.

same machine serving for inference requests. Hence, build-
ing a complete sampling result for an inference query only
requires a fixed number of local cache lookups, substantially
reducing the sampling latency. We achieve these by three
key designs:
Event-drivenPre-sampling. By event-driven pre-sampling,
Helios transfers the sampling computation from real-time
inference to the graph update process. Specifically, Helios
decomposes a K-hop sampling query into 𝐾 one-hop sam-
pling queries, and proactively maintains the results of these
one-hop sampling queries following the continuous influx
of graph updates. Figure 1 is an example of a 2-hop query
used in e-commerce recommendation [86, 98], which is de-
composed into two distinct 1-hop queries: 𝑄1 and 𝑄2 for the
first-hop and second-hop sampling, respectively. As Figure 2
shows, when a new Click event arrives, 𝑄1 takes this edge
and the previous sampling results of𝑉1 as inputs to generate
the new sampling results for 𝑉1. Similarly, the sampling re-
sults of𝑉3 are updated by𝑄2 with a new Co-purchase event.
§ 5 describes more details on this process.
Query-aware Sample Cache. To scale out the through-
put of serving sampling queries and minimize the query
latency, Helios slices target inference vertices into multiple
serving servers and maintains a query-aware sample cache
in each server. Helios tracks dynamically changing one-hop
sampling results essential for constructing complete K-hop
sampling results for each target vertex. For instance, in Fig-
ure 2, once 𝑉5 is selected as a new first-hop sample for 𝑉1,
the sampling results of 𝑉5 in 𝑄2 will be added into the query
aware cache serving the inference on 𝑉1. With the query-
aware sample cache, generating K-hop sampling results only
requires a fixed number of local cache lookups.

Implementing event-driven pre-sampling and query-aware
sample cache is non-trivial. In real-world applications, both
graph updates and GNN inference often experience sudden
workload bursts that do not align, posing great challenges
to the scalability of both stages.
Sampling/Serving Separation. To tackle the scalability
challenge, Helios adopts a decoupled distributed architecture:
sampling workers pre-sample the dynamic graph and push
the results to the serving workers; each serving worker main-
tains a query-aware sample cache and generates sampling



Helios: Efficient Distributed Dynamic Graph Sampling for Online GNN Inference PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

results for inference requests without incurring communica-
tion overhead. As such, the sampling and serving workers
can scale independently, enabling Helios to handle both high-
concurrency inference requests and high-throughput graph
updates. However, the separation architecture makes it chal-
lenging to trace the dynamically changing K-hop sampling
results for the sample cache. We address this with an efficient
event-driven subscription mechanism.
Experiments on multiple datasets show that Helios con-

sistently achieves a P99 latency of subgraph sampling (of
a two-hop TopK query) within 50 milliseconds. Each serv-
ing worker can handle over 4000 queries per second while
exhibiting linear scalability. The pre-sampling throughput
of a single sampling worker exceeds 1.49𝑀 records/s and
also demonstrates near-linear scalability. Compared to state-
of-the-art baselines, Helios brings up to a 67× increase in
serving throughput and up to 32× latency reduction. Helios is
implemented and deployed in Alibaba’s internal GNN train-
ing and inference stack and is open-sourced at: https://github.
com/alibaba/graph-learn (as part of Graph-Learn [98]).

The contributions of this paper are:
• We present Helios, the first system that shifts the ad-hoc
dynamic graph sampling into the graph update process
through event-driven pre-sampling.

• We propose a query-aware sample cache, enabling Helios
to meet the strict latency SLOs of graph sampling through
efficient local cache lookups.

• We develop a separated sampling/serving distributed ar-
chitecture that allows Helios to scale almost linearly for
both graph update ingestion and GNN inference serving.

2 Preliminaries
2.1 Sampling-based Graph Neural Network
For a graph 𝐺 = (𝑉 , 𝐸), GNNs compute compact representa-
tions for each target vertex using 𝐿 neural network layers. At
layer 𝑙, 𝑙 ∈ 𝐿, the activation of vertex 𝑣, 𝑣 ∈ 𝑉 updated by ag-
gregating the features or hidden activations of its neighbors,
denoted as 𝑁 (𝑣):

𝑎𝑙𝑣 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸
𝑙 (ℎ𝑙−1𝑢 |𝑢 ∈ 𝑁 (𝑣))

ℎ𝑙𝑣 = 𝑈𝑃𝐷𝐴𝑇𝐸
𝑙 (𝑎𝑙𝑣, ℎ𝑙−1𝑣 )

(1)

To scale GNNs for large graphs, industrial applications
often use mini-batch training [24, 39, 89, 98]. For example,
training GraphSAGE [39] involves: (1) selecting a mini-batch
of training vertices; (2) uniformly sampling multi-hop neigh-
bors based on specified fan-outs2; (3) collecting features of
training vertices and their sampled neighbors; (4) applying
AGGREGATE and UPDATE (Equation 1) for forward and
backward propagation to update the model.

2Graph sampling can introduce gradient bias, especially with limited neigh-
bors [25, 89], but this can be mitigated using techniques like reusing histor-
ical activations and feature dropout [25].

Figure 3. End-to-end Industrial GNN Deployment Workflow
on Dynamic Graphs. Helios focuses on the dynamic graph
sampling service for online GNN inference.

2.2 Workflow of GNN Deployment
Figure 3 illustrates an example of end-to-end GNN deploy-
ment on dynamic graphs in industrial practice. In this exam-
ple, graph updates (e.g., user clicks) are persisted in dynamic
graph storage, which serves as the data source for both train-
ing and inference.
GNNModel Training.TrainingGNNs on large-scale graphs
is both resource-intensive and time-consuming [36, 65, 66,
72, 98]. In industrial applications, GNN models are typically
updated at intervals of hours, days, or even longer using the
approach of offline training on snapshots of the dynamic
graph. Incremental training [78, 84] can reduce the training
costs by updating the model using the newly arriving data
or updates in the graph, rather than retraining the entire
model from scratch.
Online GNN Inference. While incremental training can
facilitate near-line model deployment (e.g., on an hourly
basis), it cannot capture real-time graph updates, which is es-
sential in real-time decision-making scenarios like real-time
recommendation [40, 81, 86, 88], traffic prediction [82] and fi-
nancial fraud detection [56, 73, 87]. This gap necessitates the
approach of online inference that can seamlessly integrate
real-time updates in graph structures and attributes into the
inference representations. The process of online inference
involves sampling multi-hop neighbors on dynamic graphs
for the vertex indicated in the request and employing the
GNN models to infer the vertex representation.

3 Motivation
Stringent millisecond-level latency SLOs [31, 64] of online
inference services are very challenging to existing dynamic
graph sampling approaches. We validate by deploying Tiger-
Graph [28] andNebulaGraph [77] using a cluster of 10 nodes3
with the Interactive dataset (see Table 1). The sampling query
is a 2-hop TopK query with fan-outs as [25, 10] (see § 7.1 for
more cluster and query details). The inference request con-
currency is 200 (see more results in § 7.2). Figure 4(a) shows
graph sampling accounts for over 90% of the end-to-end
latency and consistently surpasses the 100ms latency SLO
in both systems. The issues mainly come from two aspects:

3The model service is implemented by TensorFlow Serving [14] and de-
ployed on 4 extra nodes.

https://github.com/alibaba/graph-learn
https://github.com/alibaba/graph-learn


PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jie Sun et al.

Figure 4. Issues of existing dynamic graph sampling systems motivate the design of Helios. [𝑥,𝑦] in (d) represents the query
is evaluated in a 𝑥-node cluster and the sampling consists of 𝑦 hops. The dataset evaluated is Interactive [18].

(1) long tail latency due to imbalanced data-dependant sam-
pling, and (2) large network communication overheads from
distributed multi-hop sampling.
3.1 Long Tail Latency
Figure 4(b) shows that the P99 latency of both systems is sig-
nificantly higher than their average latency. This is because
the computation cost required by the ad-hoc sampling query
varies significantly based on different sampling seeds due to
the skewness of real-world graphs [38, 52]. For instance, in
a timestamp-based TopK sampling, to select the 𝐾 neighbors
with the largest timestamps for a vertex 𝑉𝑖 , the timestamp
of every edge connecting 𝑉𝑖 and its neighbor vertex has to
be collected and sorted. Moreover, supernodes often exist
in real-world graphs, e.g., celebrities in social networks [75]
and popular items exist in e-commerce graphs [98]. Travers-
ing and sampling the neighbors of supernodes significantly
increase the I/O and computation intensity.
We conduct an experiment on our cluster using Tiger-

Graph to demonstrate the effects of data skewness on sam-
pling query latency. Specifically, we load the Interactive
dataset [18] (see details in Table 1) into TigerGraph and
randomly select 200,000 vertices as seed vertices of the two-
hop timestamp-based sampling with fan-outs as [25, 10]. To
accurately evaluate the effects of skewed computation on
query latency, we set up the database on a single machine
and execute the queries sequentially, avoiding any influence
from distributed sampling or concurrent query execution.
We gather the number of traversed vertices and the execution
latency for each query. Figure 4(c) shows that there exists a
difference of more than 100× in the number of neighbor ver-
tices accessed by various queries. As the number of traversed
vertices grows, the query latency surges by approximately
20×. This result confirms that the skewness of graph distri-
bution significantly impacts the computational workloads
of sampling queries, leading to long tail latency.
3.2 Network Communication Overhead
The scale of graphs and the workload of concurrent inference
requests in industrial settings often exceed the capacity of a
single machine. Distributed graph databases are often used

to store graph data and execute sampling queries in a dis-
tributed cluster, where each machine stores a partition of the
graph. Given that GNN inference typically involves multi-
hop sampling, distributed graph storage inevitably incurs
communication overhead during the processes of traversing
neighboring vertices and fetching the features of neighbors.
We conducted experiments using TigerGraph with the

Interactive dataset [18] to assess the effects of both the num-
ber of sampling hops and the cluster size on distributed
sampling latency. The fan-out of the 3-hop (2-hop) query
is [25, 10, 5] ([25, 10]). The query latency for various con-
figurations is presented in Figure 4(d). The results indicate
that increasing the number of sampling hops from 2 to 3 sig-
nificantly elevates the query latency by over 6.52×. This is
because 3-hop sampling necessitates an additional round of
cross-machine communication compared to 2-hop sampling.
Furthermore, when compared to single-machine sampling,
distributed sampling introduces a substantial latency spike
of up to 1.82×.

4 System Design
To solve the issues in § 3, we present Helios, the first special-
ized (non-graph-database) dynamic graph sampling service
designed to fulfill the stringent latency SLOs for online GNN
inference. Inspired by the key insight that the sampling query
pattern of GNN inference is determined by how the model is
trained, Helios shifts ad-hoc sampling query execution to
the process of graph updates. Helios adopts a sampling/serv-
ing separation architecture: Sampling workers proactively
refresh the sample results by an event-driven pre-sampling
mechanism and push the multi-hop pre-sampled results to
a designated serving worker, ensuring that GNN inference
queries can be completed through a fixed number of local
cache lookups in a single serving worker.
4.1 Separation of Sampling & Serving
Figure 5 presents the overall system architecture of Helios. In
a Helios deployment with𝑀 sampling workers and 𝑁 serv-
ing workers, graph updates are evenly partitioned into 𝑀
partitions, each of which is designated to a sampling worker.
Inference requests are similarly partitioned into 𝑁 partitions
according to the IDs of the seed vertex, with each serving



Helios: Efficient Distributed Dynamic Graph Sampling for Online GNN Inference PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

Figure 5. Helios Overview

Figure 6. Architecture of Sampling/Serving Worker

worker exclusively handling one partition4. Helios adopts
Kafka [11] to persistently store and transfer the inputs for
sampling and serving workers. Helios allows users to con-
figure their sampling query. The coordinator registers the
user-specified query, decomposes the K-hop query into one-
hop queries, and initializes these one-hop queries in the sam-
pling and serving workers. The coordinator models the data
dependency between one-hop queries as a directed acyclic
graph and sends it to all workers to facilitate the manage-
ment of the subscription table (see § 5.3 for more details)
and the construction of complete sampling results. While
the service is running, the coordinator monitors the liveli-
ness of all workers via heartbeats and periodically triggers
checkpointing for fault tolerance.

The separation of sampling and serving processes enables
independent scaling of sampling and serving workers, allow-
ing the system to adapt to dynamically varying workloads.
This design also provides physical isolation of the workloads,
ensuring stable serving latency during temporary graph up-
date bursts in the sampling workers. We recommend users
first assess the throughput of a single sampling or serving
worker, and then scale out the sampling and serving work-
ers according to the application’s requirements, such as the
graph update rates and inference query rates.
4.2 Sampling Worker
Figure 6 shows the detailed architecture of the sampling
worker. With the continuously arriving graph updates, the

4Helios allows rehashing of vertices for sampling workers and replicating
the highly loaded serving workers based on the ad-hoc skewness.

samplingworker proactively updates the results for each one-
hop sampling query, which can be further used to construct
the complete K-hop sampling results for a query vertex.
Graph Updates. Helios categorizes graph updates into two
types: (1) vertex update, denoted to as VertexUpdate(𝑉𝑖 ),
and (2) edge update, referred to as EdgeUpdate(𝐸𝑖 ). A vertex
update corresponds to an insertion of a new vertex or the
feature update of a previously observed vertex, and an edge
update always denotes the insertion of a new edge 𝐸𝑖 . Helios
focuses on append-only dynamic graph scenarios, which
is common in many logging-based graph systems [1]. For
example, when a user clicks on a news article on a website
(e.g., Google News [53]), this action is logged and retained.
Similarly, in financial networks, once a transfer between
two accounts is committed, it cannot be deleted. Helios al-
lows users to configure a time-to-live threshold, according
to which the stale data is periodically removed.
Partition Strategies. In a deployment with 𝑀 sampling
workers, graph updates are evenly sliced into𝑀 partitions
and each sampling worker exclusively handles one partition.
A pre-defined hash function is used to determine the par-
tition IDs of vertex updates. For an edge update 𝐸𝑖 , if the
graph is undirected, 𝐸𝑖 is replicated in the partitions of both
its source and destination vertices. If the graph is directed,
Helios allows users to configure edge storage policy: (1) the
BySrc policy partitions edge 𝐸𝑖 in the ID of the source vertex;
(2) the ByDest policy determines the partition ID of 𝐸𝑖 in the
ID of its destination vertex; (3) the Both policy will apply the
same edge partitioning approach as in an undirected graph.
Components in Sampling Worker. The sampling worker
mainly consists of three components: (1) A reservoir table
for each one-hop query, where the 𝑘𝑒𝑦 is the vertex ID and
the values are the sampled neighbor vertex IDs for the cor-
responding vertex. The reservoir capacity is determined by
the query fan-out. (2) A feature table that stores the dynami-
cally updated feature for each vertex in the local partition
of this sampling worker. (3) A subscription table for each
one-hop query, which maintains the list of serving workers
subscribing to the feature and sample updates of key vertices
in the reservoir table of this query. More details on these
components’ functionality are explained in § 5.
Execution Engine of Graph Update Ingestion. Helios
pipelines IO and computation in sampling workers and mini-
mizes the interference among different types of workloads by
isolating them into distinct threads, which are implemented
by a distributed actor-based framework. There are three
types of threads in sampling workers: (1) Polling threads
continuously fetch the latest graph updates from the input
queue. (2) Sampling threads execute the one-hop sampling
queries and update subscription tables. (3) Publisher threads
push the sampled results to the corresponding output Kafka
queues according to the subscription table. Helios can prior-
itize workloads by assigning them to a larger thread pool.



PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jie Sun et al.

Figure 7. Example of subscription table update with a 2-hop
query triggered by sample update changes from timestamp
𝑇1 to 𝑇2. 𝑆𝐴𝑊𝑖 represents the sampling worker 𝑖 and 𝑆𝐸𝑊𝑗

represents the serving worker 𝑗 .

4.3 Serving Worker
Figure 6 shows the detailed architecture of the servingworker.
The serving worker subscribes to the outputs of the sampling
workers and promptly responds to the sampling queries in
inference requests. Each serving worker serves sampling
queries of GNN inference requests independently without
introducing extra network communication overheads, dras-
tically cutting down the serving latency, while also linearly
scaling the serving throughput with more serving workers
(resolved the issue in § 3.2). Moreover, the number of local
cache lookups required to generate the full sampling result is
bounded by the product of the multi-hop sampling fan-outs.
This reduces the tail latency even when sampling on highly
skewed graphs (resolved the issue in § 3.1).
Components in Serving Worker. Each serving worker
maintains a query-aware sample cache that consists of two
parts: (1) a sample table for each one-hop sampling query
that stores the pre-sampled neighbors of vertices, and (2)
a feature table that maintains the latest feature for all the
existing vertices in the sample tables, including all the seed
and sampled neighbor vertices (see § 6 for more details).
Helios also allows users to configure a time-to-live threshold
to remove the stale data in the sample cache.
Execution Engine of Sampling Query Serving. The
front-end node routes inference requests to serving servings
according to the IDs of their seed vertices. On receiving a
sampling query for an inference request, the serving worker
constructs the query result by referencing its local sample
cache. Similar to sampling workers, serving workers desig-
nate different workloads to different physical threads by the
distributed actor-based framework: (1) Polling threads con-
tinuously fetch the latest samples from the input queue. (2)
Data updating threads update the sample and feature table.
(3) Serving threads execute the sampling queries received
from the front-end nodes and further send sampled results
to model services such as TF-serving [14].

5 Event-driven Pre-sampling
As outlined in § 4.1, the pre-sampling process in a sampling
worker is triggered by the arrival of graph updates. The
pre-sampling of a K-hop sampling query mainly consists of
three steps: (1) K-hop query decomposition, (2) event-driven
reservoir sampling, and (3) updating the subscription table
and publishing samples.
5.1 Query Decomposition
To pre-sample a multi-hop query, the coordinator decom-
poses a K-hop sampling query into 𝐾 one-hop queries. Fig-
ure 1 shows an example 2-hop query used in an e-commerce
recommendation context [86, 98]. This query defines a pro-
cess of 2-hop sampling that starts from a given User vertex.
It first randomly samples two neighbors (item vertices) as-
sociated with User ID via the Click edge. Subsequently, it
samples two neighbors for these one-hop sampled neigh-
bors through the Co-purchase edge, prioritizing edges with
larger timestamps. This query is divided into two distinct
one-hop queries: 𝑄1 and 𝑄2. Specifically, 𝑄1 performs the
first-hop Random sampling on the Click edge, 𝑄2 conducts
the second-hop TopK sampling on the Co-purchase edge,
and the inputs of 𝑄2 are the outputs of 𝑄1.
5.2 Event-driven Reservoir Sampling
On receiving the decomposed queries, sampling workers re-
trieve the graph updates from their input queues and refresh
the sampling results for each one-hop query. Specifically, a
reservoir table is maintained for each one-hop query. The
keys in each reservoir table are the target vertex IDs of the
corresponding one-hop query, e.g., the IDs of User vertices
for 𝑄1 in Figure 1. Each value cell stores the IDs of the sam-
pled neighbors corresponding to the key vertex in the reser-
voir table. Note that, the capacity of value cells is determined
by the fan-out of the query. For instance, the cell capacity
of 𝑄1 is 2. The feature table in a sampling worker stores the
latest features of vertices in its local partition. As explained
in § 4.2, each sampling worker handles a partition of the
graph updates, ensuring no duplication among all sampling
workers for the keys in their reservoir/feature tables.

When processing an edge update, (𝐸𝑘 : 𝑉𝑖 → 𝑉𝑗 ), if 𝑉𝑖
is the target vertex of a one-hop query 𝑄𝑘 , the sampling
results for 𝑉𝑖 under 𝑄𝑘 are updated based on the sampling
strategy of 𝑄𝑘 . If 𝑉𝑗 is chosen as a new sample for 𝑉𝑖 , the
reservoir table of𝑄𝑘 will be updated. If the value cell of𝑉𝑖 is
full, a previously sampled neighbor of 𝑉𝑖 will be replaced by
𝑉𝑗 (determined by the sampling algorithm). Otherwise, 𝑉𝑗 is
added as a new sample for𝑉𝑖 . Upon receiving a vertex update,
the sampling worker updates the corresponding entry in the
feature table with the latest vertex feature.
Helios can support sampling strategies like Random5 and

TopK. The data distribution of reservoir sampling is the same
5Other sampling strategies like EdgeWeight [42] are similar to Random [70]
which replaces the random generator with the ones considering other
probability distributions.



Helios: Efficient Distributed Dynamic Graph Sampling for Online GNN Inference PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

as ad-hoc sampling [42, 70]. When determining if a neighbor
𝑉𝑗 of vertex 𝑉𝑖 should be chosen as a new sample, Random
reservoir sampling generates a random number 𝑝 in range
[1, 𝑥], where 𝑥 is the total number of input edge updates to
the value cell of𝑉𝑖 at this moment. If 𝑝 is not larger than the
value cell capacity𝐶 , the 𝑝-th item in the cell will be replaced
by 𝑉𝑗 . In the timestamp-based TopK reservoir sampling, the
sampling worker compares the timestamps of the incoming
graph update and those of the existing samples and replaces
the oldest sample.
5.3 Subscription Update and Sample Publish
As shown in Figure 7, Helios maintains a subscription table
in sampling workers for each one-hop query, tracking how
sample results are disseminated to serving workers.

After pre-sampling with a graph update, the subscription
table will be updated correspondingly. Figure 7 presents an
example of updating the subscription table. At time 𝑇1, the
serving worker 𝑆𝐸𝑊1 subscribes to the samples of vertex 𝑉1
from𝑄1, and vertex𝑉3 from𝑄2, as𝑉3 is a first-hop sample of
𝑉1. At time𝑇2,𝑉4 is chosen as a new sample for𝑉1 in𝑄1, and
𝑉3 is substituted by 𝑉4. If 𝑉1 is the only vertex that triggers
the subscription relationship between 𝑆𝐸𝑊1 and 𝑉3, 𝑆𝐸𝑊1
will be deleted from the subscription list of 𝑉3 in 𝑄2. As 𝑉4
is a new sample for 𝑉1, 𝑆𝐴𝑊1 will send a message to notify
𝑆𝐴𝑊𝑀 that 𝑆𝐸𝑊1 should be added to the subscription list
of 𝑉4 in 𝑄2. This will result in 𝑆𝐴𝑊𝑀 sending the sample
vertices of 𝑉4 in 𝑄2 and their features to 𝑆𝐸𝑊1.

Sampling workers distribute sample updates to the serving
workers’ sample queues based on their subscription tables.
It’s important to note that when vertices are no longer under
the subscription of a specific serving worker, the sampling
workers also enqueue an update message to the sample
queues. Serving workers then retrieve messages from the
designated sample queues and update the caches accordingly.
5.4 Discussion
Helios is designed for applications that require stringent
latency SLO. Thus we adopt a design that trade-offs pre-
sampling costs with the performance of real-time serving.
Helios performs pre-sampling for every graph update rel-
evant to the sampling query. This will lead to some sam-
pling results that are never accessed by inference requests.
However, the ratio of such sampling results is usually quite
limited, because: (1) inference requests continuously arrive
and the sampled results are accessed not only when they are
used as the sampling seeds but also as the multi-hop neigh-
bors of some vertices, and (2) sampling results of vertices
that are never used tend to be updated less frequently. We
show that these non-accessed sampling results have negligi-
ble impact on serving latency/throughput due to the design
of sampling/serving separation, as shown in § 7.2.3.

Figure 8. Example of cache updating and query processing
with the query-aware sample cache. 𝑆𝐸𝑊𝑗 represents the
serving worker 𝑗 .

6 Query-aware Sample Cache
As outlined in § 4.3, each serving worker maintains a query-
aware sample cache that holds a partition of vertices with
their complete K-hop neighbors and the corresponding fea-
tures. As depicted in Figure 8, the cache consists of a sample
table and a feature table, both of which are key-value (KV)
stores and are implemented using the hybrid-memory-disk
mode of RocksDB [32].
Serving Sampling Queries. On receiving an inference re-
quest, Helios routes the request to a specific serving worker
according to the seed vertex ID. For example, in Figure 8,
serving worker 𝑆𝐸𝑊1 receives the inference Request(𝑉3).
Subsequently, 𝑆𝐸𝑊1 initiates lookup operations in its local
sample table and the feature table: Serving worker 𝑆𝐸𝑊1
searches for the samples related to vertex 𝑉3 and gets ver-
tices 𝑉6 and 𝑉8 as the first-hop samples. Subsequently, it
continues by iteratively searching for samples correspond-
ing to vertices𝑉6 and𝑉8, eventually assembling the complete
set of K-hop samples. After obtaining the IDs of sampled
vertices, the serving worker then accesses the feature table to
retrieve the features of all sampled vertices to compose the fi-
nal sampling result. Assuming that the fan-outs of the K-hop
sampling query are𝐶1,𝐶2, ...,𝐶𝐾 , the number of lookup oper-
ations in the sample table can be calculated as

∏𝐾−1
𝑖=1 𝐶𝑖 , and

the number of lookup operations in the feature table can be
calculated as

∏𝐾
𝑖=1𝐶𝑖 . The query-aware sample cache in serv-

ing workers optimizes sampling query latency and facilitates
linear scaling of serving throughput by eliminating network
communications. Constrained by consistent cache lookup
costs, Helios effectively minimizes sampling latency, even
when handling dynamic graphs with significant skewness.
Cache Update. Each serving worker continuously polls the
sample queues to get the updated sample data, which are
used to update the sample and feature table. Helios only
caches the sampled graph topology and feature data in serv-
ing workers, which are much smaller compared to the origi-
nal graph. When scaling out serving workers, the cache size
of each single worker decreases with more serving workers
deployed, though the caches could partially overlap among



PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jie Sun et al.

Table 1. Dataset Statistics.
Dataset Vertex Number Edge Number Feature Dim. Out Degree (Max/Min/Ave.)

BI 1.9B 2.4B 10 8,525/ 0/ 1.26
INTER 40M 3.8B 10 3,632/ 0/ 95
FIN 2M 2.2B 10 9,831/ 0/ 5.5

Taobao 1.8M 8.6M 128 3,726/ 2/ 4.8

Table 2. Sampling Queries
Dataset Query Pattern #Hops Fan-outs

BI Person-Knows-Person-Likes-Comment 2 [25,10]
INTER Forum-Has-Person-Knows-Person 2 [25,10]
FIN Account-TransferTo-Account-TransferTo-Account 2 [25,10]

Taobao User-Click-Item-CoPurchase-Item 2 [25,10]
INTER Forum-Has-Person-Knows-Person-Knows-Person 3 [25,10, 5]

different serving workers. As shown in Figure 16, the cache
size on each serving worker reduces from 62% to 19% of
the original dataset size by increasing the number of serv-
ing workers from 1 to 4. In real-world online GNN infer-
ence workloads, such as online recommendation and fraud
detection, graph updates prompted by individual user ac-
tions typically occur at intervals of several seconds or even
longer granularity [4, 9, 18, 29, 60, 91, 93]. Helios can achieve
second-level ingestion latency under input rates of millions
of updates per second, which is sufficient to reflect the lat-
est graph updates in online GNN inference scenarios (see
experiments in § 7.4).
Consistency. We compare the impact of different consis-
tency guarantees between graph updates and query serving
on inference accuracy. Assuming that there are new graph
updates and concurrent inference requests. For sampling
queries on dynamic graphs, a single graph update can result
in multiple neighbor updates to K-hop sampling results for
relevant vertices. In the following, we discuss four consis-
tency cases.
Under a strong consistency guarantee, when the graph

updates are completely ingested (Case 1), query serving can
observe 100% updates, which is an optimal case where all the
latest graph updates are immediately visible to serving re-
quests. When the graph updates are not completely ingested
(Case 2), the query serving can observe 0% new updates. Un-
der eventual consistency, when graph updates are completed
(Case 3), query serving can observe all updates like case
1. When graph updates are not completed (Case 4), query
serving can partially observe, e.g., 50%, updates. Because
GNN can aggregate multi-hop neighbor information, even-
tual consistency (Cases 3 and 4) allows Helios to observe
as many sampling updates as possible during query serv-
ing, thereby enabling Helios to reflect graph updates more
rapidly. Therefore, Helios guarantees eventual consistency.
We show in § 7.4 that inference accuracy of Helios can be
close to the optimal case (Case 1) where all the latest graph
updates are immediately visible to serving requests.

7 Evaluation
We study the performance of Helios in the following aspects:
E1, Overall System Performance. We study the graph
update ingestion and query serving performance of Helios
by comparing with state-of-the-art graph databases, and also
the impact of sampling/serving design in Helios (§ 7.2).
E2, System Scalability. We study how well pre-sampling
and serving in Helios can scale up in a many-core server and
scale out in a distributed cluster (§ 7.3).
E3, Microbenchmarks. We design microbenchmarks to
study the impacts of sampling hop numbers, and the scale
of the sample cache in serving workers and study the data
ingestion latency and inference accuracy of Helios. (§ 7.4).
E4, Online Deployment Performance. We deploy an on-
line GNN inference service with Helios to evaluate the infer-
ence performance (§ 7.5).
7.1 Experiment Setup
Platform. The experiments are conducted using a Kuber-
netes clusterwith 10 nodes. Each node has an Intel(R) Xeon(R)
Platinum 8269CY (2 × 16 threads) CPU @ 2.50GHz, 128 GB
memory, 200GB cloud-based ESSD and 10Gbps network.
Datasets. We conduct experiments on three dynamic graph
datasets from the LDBC graph benchmark [18, 60] and an
industrial dynamic graph dataset from Taobao [29]. Table 1
shows the dataset characteristics. The LDBC-Interactive (IN-
TER), LDBC-Business (BI), and LDBC-finbench (FIN) datasets
are from the LDBC social network benchmark [18] and finan-
cial benchmark [60]. We replay the four datasets to simulate
continuously arriving dynamic graph updates. For the FIN
dataset, we replay the edge updates 200 times with increasing
timestamps to scale the number of edges to 2 billion.
Sampling Queries. Existing approaches and GNN bench-
marks [13, 39, 46, 54] mainly evaluate two-layer or three-
layer GNNs, as deeper GNNs are less used in practice due
to the over-squashing effects [17] and over-smoothing ef-
fects [21]. Table 2 summarizes the queries used in the ex-
periments6. Unless explicitly explained, we use a two-hop
query for each dataset by default. In the microbenchmark
experiment (E3), we implement a three-hop query on the IN-
TER dataset to stress Helios7. For each query, we implement
two different sampling strategies: (1) TopK sampling and (2)
Random sampling. When evaluating the serving performance,
the results are collected by an average of 10 times experi-
ments, and each time we randomly select 10,000 vertices as
seed nodes of the sampling queries.
Baselines and System Configurations. To the best of
our knowledge, Helios is the first specialized (non-graph-
database) system that supports real-time graph sampling
on dynamic graphs. GNN frameworks like DGL [72] and
PyG [34] are mainly used for model training and do not

6More details of sampling queries are in the supplementary material.
7Note that Helios can support arbitrary hops, according to user’s
specification



Helios: Efficient Distributed Dynamic Graph Sampling for Online GNN Inference PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

Figure 9. End-to-end Throughput of Helios and the Baselines
with TopK and Random queries.

Figure 10. End-to-end Latency of Helios and the Baselines
with TopK and Random Queries.

support dynamic graph updates. Graph databases support
dynamic graph storage and ad-hoc sampling query execution,
and thus are commonly adopted in online GNN inference
services. E.g., Amazon adopts Neptune [5], a graph database
service, to support GNN inference on dynamic graphs [6].
We choose two state-of-the-art distributed graph databases,
NebulaGraph [77] and TigerGraph [28], as baseline systems8.
For TigerGraph, we run the experiments under the offi-

cially recommended regular query mode [12] instead of the
distributed query mode, since a GNN inference query starts
from a single vertex and usually traverses a small subgraph.
For all the compared systems, the number of threads utilized
in each node is set to 32 by default (the CPU can hyper-thread
up to 32 threads). For Helios, we deploy a Kafka cluster of
6 nodes, and the number of input Kafka partitions for both
sampling and serving workers is set to 24. We set a TTL
threshold in Helios to ensure no graph data are expired.
7.2 Overall System Performance
We compare the serving and graph update performance of
Helios with baselines on all billion-scale benchmarks (BI,
INTER, FIN). TigerGraph and NebulaGraph use all 10 nodes

8We do not compare with Neptune as a fully managed service that can only
be deployed on AWS. TigerGraph outperforms Neptune in terms of data
ingestion throughput and query execution latency [15].

Figure 11. Comparison of
Graph Update Ingestion
Throughput in Helios and
Baselines.

Figure 12. Impact of
Helios’s Sampling/Serving
Separation on the INTER
Dataset.

as their servers. Helios uses 4 nodes as sampling workers
and 6 nodes as serving workers. In § 7.2.1 and § 7.2.2, we
measure the performance of graph update and serving pro-
cesses separately, i.e., by freezing one and measuring the
other. In § 7.2.3, we study how Helios can physically isolate
the workload of graph updates and GNN inference.

7.2.1 Serving Performance Figures 9 and 10 show the
end-to-end serving throughput and latency. We increase
the request concurrency, i.e., the number of clients sending
inference requests concurrently, to stress the systems.
Serving Throughput (QPS). Figures 9 present the serving
throughput. Compared to baselines, Helios achieves an up to
184× throughput improvement with the TopK query and up
to 47× improvement with Random query. For both baselines,
the throughput of the TopK query is lower than that of the
Random query because executing TopK sampling requires
traversing all the neighbors of accessed vertices to compare
the timestamps, thus incurring higher computation costs.
In contrast, processing a K-hop sampling query in Helios
only requires a fixed number of local cache lookups, which is
independent of the degrees of sampled vertices. Thus Helios
can maintain a stable serving throughput for queries with
different sampling strategies.
Serving Latency. Figures 10 present the serving latency. The
latency of baselines grows significantly with the increase of
request concurrency and even reaches second-level under
high-concurrency workloads. Moreover, the P99 latency of
TigerGraph andNebulaGraph is over 150ms higher than their
average, indicating a long tail latency. In contrast, Helios
maintains a P99 latency of less than 50ms on all the queries
and datasets, and the gap between the P99 latency and the
average latency is within 20ms. Helios achieves up to 32×
(24×) lower P99 latency on TopK (Random) query latency re-
duction compared to state-of-the-art baselines. These results
show that Helios can achieve the latency SLO even under
highly concurrent workloads by only local cache lookup.

7.2.2 Graph Update Throughput Figure 11 illustrates
the update ingestion throughput, which is defined as a mil-
lion records per second (𝑀/𝑠). We evaluate Helios’s through-
put with two different sampling strategies: TopK and Random.



PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jie Sun et al.

Figure 13. Scalability of Sampling. Figure 14. Scalability of Serving

Compared to baselines, Helios has an ingestion throughput
improvement over 1.32×. This is because TigerGraph and
NebulaGraph ingest graph updates with a strong consistency
guarantee, introducing extra overheads. As discussed in § 6,
Helios guarantees eventual consistency, which facilitates
high-throughput data ingestion while maintaining inference
quality, as proven later in § 7.4. Helios achieves a throughput
of 11.17𝑀/𝑠 on the BI dataset because the BI dataset has a
large number of vertices, which can be directly ingested into
the feature table without pre-sampling computation.

7.2.3 Impact of Sampling/Serving Separation We ex-
amine the impact of the sampling/serving separation design
by evaluating Helios’s serving throughput and latency un-
der different graph update ingestion rates. Figure 12 shows
that the serving throughput and average latency remain al-
most stable with the increase of ingestion workloads. As
discussed in § 4, this is because Helios physically isolates
the pre-sampling computation and inference serving using
different types of workers and threads.
7.3 Scalability
In this set of experiments, we study howHelios can efficiently
scale up/out to handle fluctuating workloads from graph
updates and concurrent GNN inference requests. We use the
INTER dataset in all the following experiments.

7.3.1 Scalability of Sampling In this experiment, we
evaluate the sampling scalability of Helios. We record the
throughput of pre-sampling as a million records per second
(𝑀/𝑠) with both TopK and Random sampling strategies.
Scale-up. First, we examine the scale-up performance of the
pre-sampling under a cluster setting including 4 nodes for
sampling and 4 nodes for serving, and vary the number of
sampling threads used in each sampling worker. Figure 13(a)
shows that Helios can achieve a near-linear scale-up on the
pre-sampling throughput.
Scale-out. In the scale-out experiment of pre-sampling,
we fix the number of serving nodes at 4 and set the thread
number used in each sampling node to 16. Then we vary the
number of sampling nodes from 1 to 4. Figure 13(b) illustrates
that, when increasing the node number from 1 to 4, pre-
sampling in Helios can linearly scale out.

Figure 15. Impact of Sampling Hop Numbers

7.3.2 Scalability of Serving We set the concurrency of in-
ference requests to 200 and the sampling strategy to Random9.
Scale-up. We set both the numbers of sampling and serving
nodes to 4 and vary the number of serving threads used in
each serving worker from 4 to 16. As shown in Figure 14(a),
the serving throughput grows near-linearly with the increase
in thread numbers. On the other hand, the P99 (average) serv-
ing latency can be significantly reduced from 78ms (31ms)
to 24ms (8ms) by increasing the thread number from 4 to 16.
Scale-out. We fix the number of sampling nodes to 4, set the
thread number in each serving node to 16, and increase the
number of serving nodes from 1 to 4. Figure 14(b) illustrates
that, with an increase in the number of serving nodes, the
serving throughput increases linearly, and the P99 (average)
latency decreases from 83ms (42ms) to 24ms (8ms). This
experiment highlights that the serving performance of Helios
scales out well, as processing K-hop sampling queries only
requires local cache lookups in serving workers and incurs
no network communication cost.
7.4 Microbenchmark
In this set of experiments, we stress Helios’s serving per-
formance with more sampling hops and study the scale of
sample caches in serving workers. We also examine the in-
gestion latency and inference accuracy of Helios. We use
the Random sampling in this set of experiments. Helios is
deployed with 4 sampling nodes and 6 serving nodes.
Sampling Hops. We compare the serving performance
when deploying a two-hop query and a three-hop query (see
Table 2) on the dataset INTER. The three-hop query increases
the serving workload by 5× over the two-hop query. Thus
we can observe in Figure 15 that serving throughput under
a three-hop query is lower than that of a two-hop query
9The serving process only involves local cache lookups, thus the serving
performance is independent of the sampling strategy.



Helios: Efficient Distributed Dynamic Graph Sampling for Online GNN Inference PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

Figure 16. Evaluation of
Sample Cache Ratio.

Figure 17. Helios’s Inges-
tion Latency.

Figure 18. Inference Accu-
racy.

Figure 19.Online GNN In-
ference with Helios.

but still maintains 5000 QPS. Figure 15 also demonstrates
an increase in query latency of the three-hop query. When
the concurrency is relatively low (e.g., 100), the P99 latency
of the three-hop query remains under 100ms. To effectively
manage highly concurrent requests and more than three
layers, it is advisable to deploy Helios with more serving
workers to reduce serving latency, as verified in § 7.3.2.
Sample Cache. We examine the size of serving caches with
the growth of serving node numbers on the INTER dataset.
We record the average cache size including both memory and
disk utilization (hybrid mode with Rocksdb) across all nodes
and divide the average cache size by the original dataset
size to get the cache ratio per node. Figure 16 illustrates that
the cache ratio decreases from 62% to 19% with 1 to 4 serv-
ing nodes. This is because Helios only caches the sampled
graph and feature in serving workers and slices the samples
and features across partitions. Helios can scale out serving
workers to handle more sampling hops or larger datasets.
Ingestion Latency. Figure 17 demonstrates the ingestion
latency of Helios across four datasets. The results show that
Helios can achieve as low as 1.2 seconds of P99 ingestion
latency, which is recorded under millions of incoming graph
updates per second, demonstrating that Helios can effectively
capture dynamic graph updates in near real-time.
To study the impact of ingestion latency on sampling re-

sults, we simulate a worst-case read-after-write workload for
Helios: an inference request on 𝑉𝑖 is made immediately after
an update within any of 𝑉 ′

𝑖 𝑠 two-hop neighboring subgraph
is detected. We measure the percentile of relevant graph
updates that should be considered when sampling 𝑉𝑖 but
missed due to the ingestion latency. We randomly select 1%
of the vertices and use their updates to trigger inference re-
quests. The results show that, on the four datasets in Table 1,
only 0.03%, 0.02%, 1.90%, and 0.01% updates of the sampling
subgraphs are invisible under the ingestion latency.
Effect of Consistency to Inference Accuracy. We se-
lect a real-world Taobao dataset to study Helios’s inference
accuracy using a GraphSAGE model for User-to-Item link
prediction. By manually varying the ingestion latency in
Helios from 0.25 seconds to 3.5 seconds, we generate the
sampling results and use them as the inputs of the model
serving.We compare the inference accuracy of Helios (where
the sampling results are impacted by the ingestion latency)

with the optimal case (case 1, see § 6), which allows each
inference request to see all the writes during sampling. The
results in Figure 18 show that Helios that relies on eventual
consistency guarantee achieves similar inference accuracy
as the implementation that adopts the optimal case, where
the typical ingestion latency is marked with a star.
7.5 Online GNN Inference with Helios
We examine the online GNN inference performance with
Helios. We deploy Helios with 4 sampling nodes, 6 serving
nodes, and 4 nodes for TensorFlow Serving [14]. We use
4 extra client nodes to send concurrent GNN inference re-
quests. The inference query is a two-hop query on the INTER
dataset (illustrated in Table 2). Figure 19 demonstrates that
GNN inference with Helios achieves a serving throughput up
to 17000 QPS and maintains the P99/average latency below
100ms in most cases. When the concurrency level is high, e.g.
800, the P99 serving latency slightly exceeds 100ms, mainly
because the client nodes are overloaded with receiving and
sending sample results. With more client nodes, e.g., 8 nodes,
we can still observe a 94ms P99 latency.

8 Related Work
Graph Learning on Dynamic Graphs. Different from tra-
ditional graph learning on static graphs [24, 27, 39, 47, 69, 89],
many recent works [48, 55, 56, 59, 61, 62, 68, 71, 73, 74, 76, 83,
96] highlight the necessity to incorporate the dynamically
updated graph structure and attribute into GNN represen-
tations to address the issues such as concept drift [35] in
recommendation systems [50, 51], real-time fraud detection
in financial management systems [73]. Temporal GNN mod-
els [48, 59, 61, 62, 73, 83] encode the time-domain informa-
tion into the graph representation. Others [6, 51, 55, 56, 98]
incrementally update static GNN model and leverage online
inference to facilitate real-time model serving. Helios aims
to accelerate dynamic graph sampling for online GNN in-
ference, which is orthogonal to the above works. There are
dynamic graph approaches besides GNN to mine dynamic
graph updates. Systems like Kineograph [26], Graphbolt [57],
and Tripoline [43] focus on non-learning-based algorithms
such as shortest paths and connected components. In con-
trast, Helios primarily focuses on sampling and serving for
GNN inference.



PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jie Sun et al.

GNN Systems. GNN frameworks [34, 66, 72, 79, 80] mainly
focus on GNN training. Although they can also be used
for inference on static graphs with temporal information,
they don’t support dynamic graph updates required in online
inference scenarios. Some GNN inference systems [44, 49, 67,
85, 90] only focus on inferencewith static graphs. Other GNN
inference systems [63, 92, 94, 95] build hardware accelerators,
e.g., FPGA, to support inference with dynamic graph updates.
Besides, there are some GPU-based sampling systems [37,
41, 58] that can provide high graph sampling throughput but
also limit the graph size within GPU/CPU memory capacity
in a single machine. In contrast, Helios supports distributed
graph sampling on dynamic graphs.
Graph Databases. Graph databases [2, 3, 5, 7, 8, 10, 20,
22, 23, 28, 30, 45, 77, 99] are inherently designed to store,
manage, and query graph data. However, when employed
as graph sampling services for online GNN inference, graph
databases must perform multi-hop graph sampling queries
in real time, which introduces substantial graph traversal
and computational overhead, thereby hindering them from
meeting millisecond-level SLOs. In contrast, Helios shifts the
graph sampling to the graph update stage and only executes
local cache lookups during the online GNN inference process,
thereby sufficiently guaranteeing the latency SLO.

9 Conclusion
We propose Helios, the first system that shifts the ad-hoc dy-
namic graph sampling into the graph update process through
event-driven pre-sampling. Heliosmaintains the query-aware
sample cache to serve inference queries locally, enabling
to meet the stringent latency SLOs for online GNN infer-
ence. Helios separately allocates distributed machines for
pre-sampling and inference serving, allowing scaling near
linearly to handle both high-concurrency inference requests
and high-throughput graph updates. Experiments show that
Helios achieves up to 67× improvements in serving through-
put and up to 32× reduction in P99 query latency, compared
to existing dynamic graph sampling approaches.

Acknowledgments
The work is supported by the following grants: the National
Key R&D Program of China (Grant No. 2022ZD0119301), the
National Natural Science Foundation of China under the
grant numbers (62472384, 62441605, 62441236, U24A20326),
the Fundamental Research Funds for the Central Universities,
Starry Night Science Fund of Zhejiang University Shang-
hai Institute for Advanced Study (SN-ZJU-SIAS-0010). Zeke
Wang and Li Su are the corresponding authors.

References
[1] 2013. The Log: What every software engineer should

know about real-time data’s unifying abstraction. https:
//engineering.linkedin.com/distributed-systems/log-what-every-
software-engineer-should-know-about-real-time-datas-unifying.

[2] 2021. ArangoDB. https://www.arangodb.com/.
[3] 2021. JanusGraph. https://janusgraph.org/.

[4] 2021. User Behavior Data from Taobao for Recommendation. https:
//tianchi.aliyun.com/dataset/649.

[5] 2022. AWS Neptune. https://aws.amazon.com/neptune/.
[6] 2022. AWS SAGEMaker. https://aws.amazon.com/cn/blogs/machine-

learning/build-a-gnn-based-real-time-fraud-detection-solution-
using-amazon-sagemaker-amazon-neptune-and-the-deep-graph-
library/.

[7] 2022. Azure Cosmos DB. https://docs.microsoft.com/en-us/azure/
cosmos-db/graph/graph-introduction.

[8] 2022. Neo4j. https://neo4j.com.
[9] 2022. Rec-Tmall. https://tianchi.aliyun.com/dataset/140281.
[10] 2023. Alibaba GDB. https://www.aliyun.com/product/gdb/.
[11] 2023. Apache Kafka. https://kafka.apache.org/.
[12] 2023. Issues of Distributed Query Mode. https://dev.tigergraph.

com/forum/t/obvious-reasons-why-distributed-mode-would-slow-
down-query/1335.

[13] 2023. Leaderboards for Node Property Prediction. https://ogb.stanford.
edu/docs/leader_nodeprop/.

[14] 2023. TensorFlow Serving. https://github.com/tensorflow/serving.
[15] 2023. TigerGraph Compare to Neptune. https://www.tigergraph.com/

blog/amazon-neptune/.
[16] Gediminas Adomavicius and Jingjing Zhang. 2012. Stability of recom-

mendation algorithms. In TOIS (2012).
[17] Uri Alon and Eran Yahav. 2021. On the Bottleneck of Graph Neural

Networks and its Practical Implications. In ICLR.
[18] Renzo Angles, János Benjamin Antal, Alex Averbuch, Altan Birler,

Peter Boncz, Márton Búr, Orri Erling, Andrey Gubichev, Vlad Haprian,
Moritz Kaufmann, et al. 2020. The LDBC social network benchmark.
In Arxiv (2020).

[19] Fedor Borisyuk, Shihai He, Yunbo Ouyang, Morteza Ramezani, Peng
Du, Xiaochen Hou, Chengming Jiang, Nitin Pasumarthy, Priya Ban-
nur, Birjodh Tiwana, et al. 2024. LiGNN: Graph Neural Networks at
LinkedIn. In SIGKDD.

[20] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett, Miguel Castro,
Wonhee Cho, Joshua Cowhig, Nikolas Gloy, Karthik Kalyanaraman,
Richendra Khanna, John Pao, et al. 2020. A1: A distributed in-memory
graph database. In SIGMOD.

[21] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020.
Measuring and Relieving the Over-Smoothing Problem for Graph
Neural Networks from the Topological View. In AAAI.

[22] Hongzhi Chen, Changji Li, Chenguang Zheng, Chenghuan Huang,
Juncheng Fang, James Cheng, and Jian Zhang. 2022. G-tran: a high per-
formance distributed graph database with a decentralized architecture.
In VLDB.

[23] Hongzhi Chen, BowenWu, Shiyuan Deng, ChenghuanHuang, Changji
Li, Yichao Li, and James Cheng. 2020. High performance distributed
OLAP on property graphs with grasper. In SIGMOD.

[24] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with
Graph Convolutional Networks via Importance Sampling. In ICLR.

[25] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph
Convolutional Networks with Variance Reduction. In ICML.

[26] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,
Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012.
Kineograph: taking the pulse of a fast-changing and connected world.
In Eurosys.

[27] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-
Jui Hsieh. 2019. Cluster-GCN: An Efficient Algorithm for Training
Deep and Large Graph Convolutional Networks. In SIGKDD.

[28] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor Lee. 2019. Tigergraph: A
native MPP graph database. In Arxiv (2019).

[29] Zhengxiao Du, Xiaowei Wang, Hongxia Yang, Jingren Zhou, and Jie
Tang. 2019. Sequential scenario-specific meta learner for online rec-
ommendation. In SIGKDD.

https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://www.arangodb.com/
https://janusgraph.org/
https://tianchi.aliyun.com/dataset/649
https://tianchi.aliyun.com/dataset/649
https://aws.amazon.com/neptune/
https://aws.amazon.com/cn/blogs/machine-learning/build-a-gnn-based-real-time-fraud-detection-solution-using-amazon-sagemaker-amazon-neptune-and-the-deep-graph-library/
https://aws.amazon.com/cn/blogs/machine-learning/build-a-gnn-based-real-time-fraud-detection-solution-using-amazon-sagemaker-amazon-neptune-and-the-deep-graph-library/
https://aws.amazon.com/cn/blogs/machine-learning/build-a-gnn-based-real-time-fraud-detection-solution-using-amazon-sagemaker-amazon-neptune-and-the-deep-graph-library/
https://aws.amazon.com/cn/blogs/machine-learning/build-a-gnn-based-real-time-fraud-detection-solution-using-amazon-sagemaker-amazon-neptune-and-the-deep-graph-library/
https://docs.microsoft.com/en-us/azure/cosmos-db/graph/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph/graph-introduction
https://neo4j.com
https://tianchi.aliyun.com/dataset/140281
https://www.aliyun.com/product/gdb/
https://kafka.apache.org/
https://dev.tigergraph.com/forum/t/obvious-reasons-why-distributed-mode-would-slow-down-query/1335
https://dev.tigergraph.com/forum/t/obvious-reasons-why-distributed-mode-would-slow-down-query/1335
https://dev.tigergraph.com/forum/t/obvious-reasons-why-distributed-mode-would-slow-down-query/1335
https://ogb.stanford.edu/docs/leader_nodeprop/ 
https://ogb.stanford.edu/docs/leader_nodeprop/ 
https://github.com/tensorflow/serving
https://www.tigergraph.com/blog/amazon-neptune/
https://www.tigergraph.com/blog/amazon-neptune/


Helios: Efficient Distributed Dynamic Graph Sampling for Online GNN Inference PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

[30] Ayush Dubey, Greg D Hill, Robert Escriva, and Emin Gün Sirer. 2016.
Weaver: A High-Performance, Transactional Graph Database Based
on Refinable Timestamps. In VLDB.

[31] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu,
Rahul Sharma, Charles Sugnet, Mark Ulrich, and Jure Leskovec. 2018.
Pixie: A System for Recommending 3+ Billion Items to 200+ Million
Users in Real-Time. In WWW.

[32] Facebook. 2023. Rocksdb. https://github.com/facebook/rocksdb.
[33] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On

power-law relationships of the internet topology. ACM SIGCOMM
computer communication review (1999).

[34] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation
Learning With PyTorch Geometric. In ArXiv (2019).

[35] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and
Abdelhamid Bouchachia. 2014. A survey on concept drift adaptation.
In CSUR (2014).

[36] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed
deep graph learning at scale. In OSDI.

[37] Ping Gong, Renjie Liu, Zunyao Mao, Zhenkun Cai, Xiao Yan, Cheng Li,
Minjie Wang, and Zhuozhao Li. 2023. gSampler: General and efficient
GPU-based graph sampling for graph learning. In SOSP.

[38] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Com-
putation on Natural Graphs. In OSDI.

[39] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive repre-
sentation learning on large graphs. In NeurIPS.

[40] Yanxiang Huang, Bin Cui, Wenyu Zhang, Jie Jiang, and Ying Xu. 2015.
Tencentrec: Real-time stream recommendation in practice. In SIGMOD.

[41] Abhinav Jangda, Sandeep Polisetty, Arjun Guha, and Marco Serafini.
2021. Accelerating graph sampling for graph machine learning using
GPUs. In Eurosys.

[42] Rajesh Jayaram, Gokarna Sharma, Srikanta Tirthapura, and David P
Woodruff. 2019. Weighted reservoir sampling from distributed streams.
In SIGMOD.

[43] Xiaolin Jiang, Chengshuo Xu, Xizhe Yin, Zhijia Zhao, and Rajiv Gupta.
2021. Tripoline: generalized incremental graph processing via graph
triangle inequality. In Eurosys.

[44] Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Il-
iopoulos, Tao Schardl, Charles E Leiserson, and Jie Chen. 2022. Ac-
celerating training and inference of graph neural networks with fast
sampling and pipelining. In MLsys.

[45] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy
Chen, and Semih Salihoglu. 2017. Graphflow: An active graph database.
In SIGMOD.

[46] Arpandeep Khatua, Vikram Sharma Mailthody, Bhagyashree Taleka,
Tengfei Ma, Xiang Song, and Wen-mei Hwu. 2024. IGB: Addressing
The Gaps In Labeling, Features, Heterogeneity, and Size of Public
Graph Datasets for Deep Learning Research. In SIGKDD.

[47] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification
with graph convolutional networks. In ICLR.

[48] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting
dynamic embedding trajectory in temporal interaction networks. In
SIGKDD.

[49] Miryeong Kwon, Donghyun Gouk, Sangwon Lee, and Myoungsoo
Jung. 2022. HolisticGNN: Geometric Deep Learning Engines for Com-
putational SSDs. In NVMW.

[50] Changji Li, Hongzhi Chen, Shuai Zhang, Yingqian Hu, Chao Chen,
Zhenjie Zhang, Meng Li, Xiangchen Li, Dongqing Han, Xiaohui Chen,
et al. 2022. ByteGraph: a high-performance distributed graph database
in ByteDance. In VLDB.

[51] Dandan Lin, Shijie Sun, Jingtao Ding, Xuehan Ke, Hao Gu, Xing
Huang, Chonggang Song, Xuri Zhang, Lingling Yi, Jie Wen, et al.
2022. PlatoGL: Effective and Scalable Deep Graph Learning System
for Graph-enhanced Real-Time Recommendation. In CIKM.

[52] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020.
Pagraph: Scaling Gnn Training on Large Graphs via Computation-
aware Caching. In SoCC.

[53] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. 2010. Personalized
news recommendation based on click behavior. In In IUI.

[54] Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He,
Yanghua Peng, Hongzheng Chen, Hongzhi Chen, and Chuanxiong
Guo. 2023. Bgl: Gpu-efficient gnn training by optimizing graph data
i/o and preprocessing. In NSDI.

[55] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang,
and Qing He. 2021. Pick and choose: a GNN-based imbalanced learning
approach for fraud detection. InWWW.

[56] Mingxuan Lu, Zhichao Han, Susie Xi Rao, Zitao Zhang, Yang Zhao,
Yinan Shan, Ramesh Raghunathan, Ce Zhang, and Jiawei Jiang. 2022.
BRIGHT-Graph Neural Networks in Real-Time Fraud Detection. In
CIKM.

[57] Mugilan Mariappan and Keval Vora. 2019. Graphbolt: Dependency-
driven synchronous processing of streaming graphs. In Eurosys.

[58] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S Li, and Hang Liu.
2020. C-SAW: A framework for graph sampling and random walk on
GPUs. In SC.

[59] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro
Suzumura, Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles
Leiserson. 2020. Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. In AAAI.

[60] Shipeng Qi, Heng Lin, Zhihui Guo, Gábor Szárnyas, Bing Tong, Yan
Zhou, Bin Yang, Jiansong Zhang, Zheng Wang, Youren Shen, et al.
2023. The LDBC Financial Benchmark. In Arxiv (2023).

[61] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard,
Federico Monti, and Michael Bronstein. 2020. Temporal graph net-
works for deep learning on dynamic graphs. In Arxiv (2020).

[62] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang.
2020. Dysat: Deep neural representation learning on dynamic graphs
via self-attention networks. InWSDM.

[63] Rishov Sarkar, Stefan Abi-Karam, Yuqi He, Lakshmi Sathidevi, and
Cong Hao. 2022. Flowgnn: A dataflow architecture for universal graph
neural network inference via multi-queue streaming. In Arxiv (2022).

[64] Chijun Sima, Yao Fu, Man-Kit Sit, Liyi Guo, Xuri Gong, Feng Lin,
Junyu Wu, Yongsheng Li, Haidong Rong, Pierre-Louis Aublin, et al.
2022. Ekko: A Large-Scale Deep Learning Recommender System with
Low-Latency Model Update. In OSDI.

[65] Jie Sun, Li Su, Zuocheng Shi, Wenting Shen, Zeke Wang, Lei Wang,
Jie Zhang, Yong Li, Wenyuan Yu, Jingren Zhou, and Fei Wu. 2023.
Legion: Automatically Pushing the Envelope of Multi-GPU System for
Billion-Scale GNN Training. In ATC.

[66] Jie Sun, Mo Sun, Zheng Zhang, Jun Xie, Zuocheng Shi, Zihan Yang,
Jie Zhang, Fei Wu, and Zeke Wang. 2025. Hyperion: Optimizing SSD
Access is All You Need to Enable Cost-efficient Out-of-core GNN
Training. In ICDE.

[67] Zeyuan Tan, Xiulong Yuan, Congjie He, Man-Kit Sit, Guo Li, Xiaoze
Liu, Baole Ai, Kai Zeng, Peter Pietzuch, and Luo Mai. 2023. Quiver:
Supporting GPUs for Low-Latency, High-Throughput GNN Serving
with Workload Awareness. In Arxiv (2023).

[68] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan
Zha. 2019. Dyrep: Learning representations over dynamic graphs. In
ICLR.

[69] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention net-
works. In Arxiv (2017).

[70] Jeffrey S Vitter. 1985. Random sampling with a reservoir. In TOMS
(1985).

[71] Chunyang Wang, Desen Sun, and Yuebin Bai. 2023. PiPAD: pipelined
and parallel dynamic GNN training on GPUs. In PPoPP.

https://github.com/facebook/rocksdb


PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Jie Sun et al.

[72] Minjie Yu Wang. 2019. Deep graph library: Towards efficient and
scalable deep learning on graphs. In ICLRW.

[73] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen
Wang, Xinguang Wang, Ping Cui, Yupu Yang, Bowen Sun, et al. 2021.
Apan: Asynchronous propagation attention network for real-time
temporal graph embedding. In SIGMOD.

[74] Yufeng Wang and Charith Mendis. 2023. Tgopt: Redundancy-aware
optimizations for temporal graph attention networks. In PPoPP.

[75] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna PN Puttaswamy,
and Ben Y Zhao. 2009. User interactions in social networks and their
implications. In Eurosys.

[76] Dan Wu, Zhaoying Li, and Tulika Mitra. 2023. InkStream: Real-time
GNN Inference on Streaming Graphs via Incremental Update. In Arxiv
(2023).

[77] Min Wu, Xinglu Yi, Hui Yu, Yu Liu, and Yujue Wang. 2022. Nebula
Graph: An open source distributed graph database. In Arxiv (2022).

[78] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu,
Yandong Guo, and Yun Fu. 2019. Large Scale Incremental Learning. In
CVPR.

[79] Yaqi Xia, Donglin Yang, Xiaobo Zhou, and Dazhao Cheng. 2024. Scal-
ing New Heights: Transformative Cross-GPU Sampling for Training
Billion-Edge Graphs. In SC.

[80] Yaqi Xia, Zheng Zhang, Hulin Wang, Donglin Yang, Xiaobo Zhou, and
Dazhao Cheng. 2023. Redundancy-Free High-Performance Dynamic
GNN Training with Hierarchical Pipeline Parallelism. In HPDC.

[81] Xu Xie, Fei Sun, Xiaoyong Yang, Zhao Yang, Jinyang Gao, Wenwu
Ou, and Bin Cui. 2021. Explore User Neighborhood for Real-time
E-commerce Recommendation. In ICDE.

[82] Yi Xie, Yun Xiong, and Yangyong Zhu. 2020. SAST-GNN: a self-
attention based spatio-temporal graph neural network for traffic pre-
diction. In DASFAA.

[83] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan
Achan. 2020. Inductive representation learning on temporal graphs.
In Arxiv (2020).

[84] Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, and
Mark Coates. 2020. Graphsail: Graph structure aware incremental
learning for recommender systems. In CIKM.

[85] Peiqi Yin, Xiao Yan, Jinjing Zhou, Qiang Fu, Zhenkun Cai, James
Cheng, Bo Tang, and Minjie Wang. 2023. DGI: An Easy and Efficient
Framework for GNN Model Evaluation. In SIGKDD.

[86] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L
Hamilton, and Jure Leskovec. 2018. Graph convolutional neural net-
works for web-scale recommender systems. In SIGKDD.

[87] Zhongbao Yu, Jiaqi Zhang, Xin Qi, and Chao Chen. [n. d.]. Application
Research of Graph Neural Networks in the Financial Risk Control.
([n. d.]).

[88] Quan Yuan, Gao Cong, and Aixin Sun. 2014. Graph-based point-of-
interest recommendation with geographical and temporal influences.
In CIKM.

[89] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,
and Viktor Prasanna. 2021. GraphSAINT: Graph Sampling Based
Inductive Learning Method. In ICLR.

[90] Dalong Zhang, Xianzheng Song, Zhiyang Hu, Yang Li, Miao Tao, Bin-
bin Hu, Lin Wang, Zhiqiang Zhang, and Jun Zhou. 2023. InferTurbo:
A Scalable System for Boosting Full-graph Inference of Graph Neural
Network over Huge Graphs. In ICDE.

[91] Yuyu Zhang, Liang Pang, Lei Shi, and Bin Wang. 2014. Large scale
purchase prediction with historical user actions on B2C online retail
platform. arXiv preprint arXiv:1408.6515 (2014).

[92] Kai Zhong, Shulin Zeng, Wentao Hou, Guohao Dai, Zhenhua Zhu,
Xuecang Zhang, Shihai Xiao, Huazhong Yang, and Yu Wang. 2023.
CoGNN: An Algorithm-Hardware Co-Design Approach to Accelerate
GNN Inference with Mini-Batch Sampling. In TCAD (2023).

[93] Wenliang Zhong, Rong Jin, Cheng Yang, Xiaowei Yan, Qi Zhang,
and Qiang Li. 2015. Stock constrained recommendation in tmall. In
SIGKDD.

[94] Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan,
and Viktor Prasanna. 2021. Accelerating large scale real-time GNN
inference using channel pruning. In VLDB.

[95] Hongkuan Zhou, Bingyi Zhang, Rajgopal Kannan, Viktor Prasanna,
and Carl Busart. 2022. Model-architecture co-design for high perfor-
mance temporal gnn inference on fpga. In IPDPS.

[96] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song,
and George Karypis. 2022. TGL: a general framework for temporal
GNN training on billion-scale graphs. In VLDB.

[97] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. 2021.
Shift-robust gnns: Overcoming the limitations of localized graph train-
ing data. In NeurIPS.

[98] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai,
Yong Li, and Jingren Zhou. 2019. AliGraph: A Comprehensive Graph
Neural Network Platform. In VLDB.

[99] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong Ma, Jiping Yu,
Lei Xie, Ashraf Aboulnaga, and Wenguang Chen. 2020. LiveGraph: A
Transactional Graph Storage Systemwith Purely Sequential Adjacency
List Scans. In VLDB.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Sampling-based Graph Neural Network
	2.2 Workflow of GNN Deployment

	3 Motivation
	3.1 Long Tail Latency
	3.2 Network Communication Overhead

	4 System Design
	4.1 Separation of Sampling & Serving
	4.2 Sampling Worker
	4.3 Serving Worker

	5 Event-driven Pre-sampling
	5.1 Query Decomposition
	5.2 Event-driven Reservoir Sampling
	5.3 Subscription Update and Sample Publish
	5.4 Discussion

	6 Query-aware Sample Cache
	7 Evaluation
	7.1 Experiment Setup
	7.2 Overall System Performance
	7.3 Scalability
	7.4 Microbenchmark
	7.5 Online GNN Inference with Helios

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

