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Abstract—SSDs are traditionally regarded as a cheap but
slow way to scale up GNN training. Several GNN systems
explore cheap single-machine single-GPU out-of-core training
but fall short in terms of TPC (throughput per monetary cost).
The underlying reason is that the existing systems 1) overly
focus on minimizing the number of SSD accesses, which results
in substantial unnecessary overhead on the CPU side, or 2)
exhaust all GPU parallelism to saturate SSD but fail to overlap
SSD accesses with GNN computation. In this work, we present
Hyperion, a cost-efficient system for terabyte-scale GNN training.
We argue that co-optimizing GPU-initiated asynchronous SSD
access and GNN computation pipeline enables us to only add cheap
NVMe SSDs, rather than expensive GPU servers, to achieve in-
memory-like throughput and thus maximal TPC of GNN training.
However, this is non-trivial due to imbalanced workloads and
interference among IO submission, IO completion, and cache
lookup. To tackle the challenges, Hyperion proposes three key
designs. First, Hyperion proposes the first GPU-initiated pipeline-
friendly asynchronous disk IO stack, which only requires about
1% GPU cores to saturate SSD throughput and wastes no GPU
cores between IO submission and completion to fully overlap disk
IO and computation. Second, we propose a new GPU-managed,
disaggregated, and unified cache that disaggregates cache lookup
from disk IO and fully utilizes CPU/GPU memory hierarchy by
a unified static cache policy. Third, we propose a GNN-aware
general TPC-analytical model that precisely predicts TPC under
diverse hardware settings and GNN models and provide a hint
to guide users to select hardware, e.g., number of SSDs, under a
limited budget to maximize TPC. Experiments demonstrate that
Hyperion can improve the TPC by over 3.1× on terabyte-scale
graphs compared to SOTA out-of-core baselines and improve
60× TPC compared to distributed in-memory baselines.

I. INTRODUCTION

Graph neural network (GNNs) [1], [16], [17], [29], [36],
[37], [75], [80], [83], [92] are deep learning models designed
to train on both structural and attribute data of graphs to
generate low-dimensional embeddings. These embeddings are
important in executing machine learning tasks such as node
classification and link prediction. GNNs have been success-
fully applied to various domains such as recommendation
systems [87] and financial risk control [45], [91] in many
companies like LinkedIn [14] and Alibaba [103]. The graph
size can now easily exceed the upper limit of CPU memory
capacity in a single machine. For example, in Alibaba’s
Taobao recommendation system, the user behavior graph con-
tains more than one billion vertices and tens of billions of
edges [103], which need several terabytes of storage space.

Cost-efficient GNN training on large-scale graphs remains
a great challenge with the continuously growing graph data
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Figure 1. Throughput and TPC Comparison of Distributed In-memory Sys-
tem (DistDGL [100]) and Out-of-core Systems (MariusGNN [78], Ginex [57],
GIDS [56], and Hyperion).

size. The widely adopted approach to train large-scale GNNs is
to use distributed in-memory solutions [21], [44], [99], [100],
which utilize multiple machines’ host memory to store graphs.
However, these systems bring an extremely high monetary
cost. For instance, training an IG [35] dataset with 1.1TB
feature data requires at least eight commodity machines,
each with 256 GB host memory. Eight commodity GPU
machines cost 362K dollars for 5-year TCO1 or 32.8 dollars
per hour on AWS [7] for on-demand g5.16xlarge instance.
To reduce monetary cost, several works [56], [57], [78] have
explored out-of-core GNN training in a single machine with
a single GPU, only requiring about 13% price of distributed
counterparts2. However, existing out-of-core systems have
low training throughput compared to distributed systems, as
shown in Figure 1(a). To comprehensively compare the cost-
efficiency of large-scale GNN training, we introduce a new
metric named TPC (throughput per monetary cost), which is
defined as the number of training samples per second for every
dollar spent. Figure 1(b) demonstrates that existing out-of-core
systems [56], [57], [78] have low TPC because these out-of-
core systems do not make full potentials of SSDs, leading to
very low GPU utilization and thus low TPC. In the following,
we categorize these systems into two types, according to where
the out-of-core mini-batch preparation is executed, as shown
in Figure 2:
CPU-managed Out-of-core Systems. Ginex [57] and Mar-
iusGNN [78] leverage the CPU to prefetch a super-batch
(SBG) of essential data from SSDs to CPU memory, thereby

1Total cost of ownership. TCO is computed in the § VI.
2Existing out-of-core systems identify that adding more GPUs in a single

machine can not increase the overall throughput [56], [78] due to IO bound
of GNN training, because adding GPUs can nearly not increase the storage
capacity for terabyte-scale graphs. Therefore, in this paper, we focus on a
single machine that has only one GPU for out-of-core training.



Figure 2. Training Workflow of Out-of-core GNN Systems. GPU-managed
systems can also access topology and features from the CPU/GPU cache, not
presented here for simplicity.

minimizing subsequent SSD accesses when generating mini-
batch data (MBG) from the corresponding super-batch. In each
mini-batch generation, these systems use the CPU to prepare
sampled vertices with their features and copy the mini-batch
to the GPU for model training (MT). However, these two
systems overly focus on minimizing SSD accesses, resulting
in substantial data preparation overhead on the CPU side: SBG
and MBG dominate the majority of overall time, over 5× more
than model training time on GPU (See Figure 3(a)).
GPU-managed Out-of-core System. To avoid CPU bot-
tlenecks, GIDS [56] utilizes the GPU-initiated direct SSD
access system BaM [60] to prepare mini-batch data without
CPU involvement. But GIDS still has low training throughput
due to two severe issues: 1) failing to maximize the disk
IO throughput (down to 60% as shown in Figure 3(b)) due
to insufficient parallelism, even using all GPU cores (See
Figure 4(a)); 2) almost serial execution of graph sampling,
feature extraction, and model training due to severe GPU core
contention issues.

In essence, existing out-of-core systems underestimate the
throughput of SSDs and the parallel power of GPUs in the
GNN training. These systems either suffer from substantial
data preparation overhead on the CPU side to overly minimize
SSD accesses, or exhaust all GPU parallelism to hide SSD
access latency and fail to fully overlap SSD access with
computation. Therefore, they achieve significantly low TPC.

In this paper, we propose Hyperion, a cost-efficient out-of-
core GNN training system on terabyte graphs. We observe that:
1) SSDs’ throughput is increasingly higher and 2) a few GPU
parallelism, e.g., 1% cores, is sufficient to saturate SSDs while
enabling IO/computation overlapping (See § II-C). Therefore,
we argue that co-optimizing GPU-initiated SSD access and
computation enables us to only add cheap NVMe SSDs,
rather than on expensive GPU servers, to achieve in-
memory-like throughput thus maximal TPC. However, it is
non-trivial to achieve. We propose three key designs to solve
the corresponding challenges:

First, we propose a new GPU-initiated pipeline-friendly
asynchronous disk IO stack to address the challenge of un-
derutilized GPU parallelism due to imbalanced workloads be-
tween disk IO submission and completion (Challenge 1). The
latency of IO submission is primarily determined by writing

NVMe commands into submission queues (SQs) on GPU
memory, whereas the latency for IO completion is dominated
by long SSD access times. Collocating IO submission and
completion within a single GPU thread provides essential
thread-grained programming flexibility for many graph work-
loads [24], [48] but leads to interference between the processes
of IO submission and completion, as discussed in § II-B.
Fortunately, we observe that existing GNN training compu-
tation operations like graph sampling and feature aggregation
could be efficiently executed in a batched manner through
careful pipeline scheduling. Therefore, we disaggregate the
IO process into two separate kernels, and thus only require
very few (e.g. 1%) GPU cores to submit sufficient IO requests
to saturate disk IO throughput and waste no GPU cores
between IO submission and IO completion. Additionally, this
disaggregation enhances the scalability of both IO stages to
accommodate varying hardware configurations.

Second, we propose a new GPU-managed disaggregated
cache with a unified static cache placement strategy to tackle
the cache/disk IO interference challenge arising from asyn-
chronous IO design (Challenge 2). Leveraging the full mem-
ory hierarchy, including CPU and GPU memory, as graph
cache is crucial for accelerating GNN training as evidenced
by various studies [43], [44], [57], [70], [86]. However, an
efficient cache lookup kernel [50], [70] requires GPU threads
within a warp concurrently reading coalesced memory ad-
dresses in a synchronous manner. Collocating cache lookup
with disk IO kernels, e.g., like BaM [60], disrupts the asyn-
chrony of disk IO designs. Otherwise, naively disaggregating
cache with disk IO faces the challenges of data dependency,
i.e., cache replacement, which causes serial execution of cache
and disk IO tasks and results in low GPU PCIe utilization.
Inspired by previous works [43], [70], [86], we observe that
due to the inherent skewness of real-world graphs, a static
cache can effectively accelerate GNN training while avoiding
cache replacement. To maximize the utilization of CPU-GPU
memory hierarchy in the static cache setting, we design a
new unified static cache placement strategy to identify cache
specialization for both graph topology and features. We then
disaggregate cache management from disk IO into parallel
GPU streams. Similar to the disk IO stack, we carefully
allocate GPU parallelism for cache management by assessing
the efficiency of PCIe burst requests.

Third, we propose the GNN-aware TPC-analytical model
to provide a hint to users on how to further improve the TPC
under a limited budget. However, the combination numbers of
hardware and GNN model is huge (Challenge 3). To solve
the challenge, the model uses a lightweight TPC Profiler
to precisely measure GNN’s data distribution and hardware
throughput. This model guides users to take single-component
hardware adjustment, e.g., only adding cheap NVMe SSDs
instead of the entire server, as a new optimization dimension
to maximize TPC.

We implement Hyperion on the top of the SOTA in-memory
system Legion [70]. We evaluate Hyperion on three popular
GNN models [29], [37], [75] and real-world graphs [6], [10]–



[13], [30], [35] whose sizes are up to 23TB. Experiments
show that Hyperion outperforms the state-of-the-art GPU-
managed baselines by up to a factor of 3.1× and exceeds
CPU-managed counterparts by over 167× on terabyte-scale
graphs (See Figure 8). And Hyperion achieves up to 60× TPC
compared to the distributed system DistDGL (See Figure 10).

The contributions of this paper are:
✓ A new insight about NVMe SSDs. Co-optimizing IO and

computation enables us to only add cheap NVMe SSDs,
rather than expensive GPU servers, to achieve in-memory-
like throughput, and thus maximal TPC of GNN training.

✓ New disaggregation design of GPU-initiated disk IO
stack. To the best of our knowledge, Hyperion proposes
the first GPU-initiated pipeline-friendly asynchronous disk
IO stack with IO submission/completion disaggregation.

✓ Novel disaggregated cache with unified policy. Hyperion
is also the first to propose the GPU-managed disaggregated,
and unified static cache for out-of-core GNN training.

✓ A GNN-aware TPC-analytical model to guide hardware
adjustment. We propose the TPC-analytical model within
Hyperion. The model can precisely predict TPC under
diverse GNN models as well as hardware combinations and
further provide a hint that guides users to add an individual
component, e.g., SSD, rather than the entire server, to
maximize TPC.

II. BACKGROUND AND MOTIVATION
A. Preliminaries

Graph Neural Networks (GNNs). For a graph G = (V,E),
GNNs are utilized to derive a compact representation for each
target vertex by applying L layers of neural networks. During
the iteration at layer l, l ∈ L, the activation hl

v of vertex
v, v ∈ V is updated by aggregating the features or the hidden
activation of its adjacent vertices, denoted as N(v):

alv = AGGREGATEl(hl−1
u |u ∈ N(v))

hl
v = UPDATEl(alv, h

l−1
v )

(1)

Mini-batch GNN Training Workflow. This paper focuses
on mini-batch GNN training, which is a practical solution for
scaling GNN training to very large graphs [14], [87], [103].
There are three main steps in mini-batch GNN training: 1)
graph sampling, 2) feature extraction, and 3) model training.
Neighbor sampling [29] is a widely adopted graph sampling
approach, which starts from a subset of training vertices,
iteratively samples multi-hop neighbor vertices according to
a specific sampling strategy [29], [92], and organizes them
into a subgraph [100]. The second step is to extract the
features, i.e., vertex embeddings with hundreds to thousands
of bytes, depending on the training vertices and their sampled
neighbors. The third step is performing AGGREGATE and
UPDATE according to Equations 1 based on the sampled
subgraph, as well as updating the model parameters. We define
the first two steps as mini-batch generation (MBG) and the
third step as model training (MT). The inherent multi-hop
neighbor expansion in MBG requires iterative irregular access
to the graph storage and retrieves fine-grained graph data. And

(a) Execution Time Breakdown of Ex-
isting CPU-managed Systems.

(b) GPU PCIe Throughput Achieved
by GIDS. The dimension is 1024.

Figure 3. Issues of existing CPU- and GPU-managed systems motivate the
design of Hyperion. SBG, MBG, H2D, and MT represent the super-batch
generation, the mini-batch generation, copying mini-batch to GPU, and model
training on GPU.

the accessed data volume is large due to the neighbor explosion
problem [92]. Therefore, previous studies [43], [44], [86] have
identified MBG as the primary bottleneck in GNN training,
distinguishing it from other DNNs, where model training (MT)
is typically the main bottleneck [42], [102]. This challenge
is further exacerbated in out-of-core GNN training settings
due to lower bandwidth and the lack of byte-addressability in
storage devices, e.g., NVMe SSDs3, compared to traditional
in-memory systems.

B. Issues of Existing Out-of-core Systems

Figure 2 illustrates the workflow of mini-batch GNN
training in out-of-core systems. Depending on where MBG
is executed, we classify out-of-core systems as two types:
CPU-managed out-of-core systems (Ginex [57] and Marius-
GNN [78]) and GPU-managed out-of-core systems (GIDS [56]
and Hyperion). Regarding the GNN training challenge in out-
of-core settings, prior works have primarily focused on either
reducing SSD access [56], [57], [78] or hiding SSD access la-
tency through extensive GPU parallelism [56]. However, these
approaches fall short of fully leveraging the capabilities of
NVMe SSDs and GPUs, resulting in significant performance
penalties such as CPU side bottleneck, GPU core contention,
and thus poor TPC.

1) CPU-managed Out-of-core Systems:
Issue 1: Low GPU utilization due to the CPU bottleneck.
Ginex [57] and MariusGNN [78] leverage the CPU to prefetch
a super-batch (SBG) of essential data from SSDs to CPU
memory, thereby minimizing subsequent SSD accesses when
generating mini-batch data (MBG) from the corresponding
super-batch. Specifically, Ginex adopts an inspector-executor
model in each GNN training epoch. During the inspector stage,
Ginex uses the CPU to process a super-batch including sam-
pled vertices of all corresponding mini-batches, and execute
feature cache management including loading features from
disk to CPU memory. In MariusGNN, the SBG mainly uses
the CPU to load graph partitions from disk to CPU mem-
ory. Previous in-memory works [59], [86] have proven that
CPU suffers from irregular memory access and imbalanced
workload during graph sampling. The additional overheads

3NVMe (Non-Volatile Memory Express) SSDs are high-performance stor-
age devices that offer faster data transfer speeds and lower latency compared
to traditional SATA (Serial Advanced Technology Attachment) SSDs. They
enable parallel processing through multiple IO queues. In this work, we
explore the potential of NVMe SSDs for out-of-core GNN training
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Figure 4. Comparison of GIDS and Hyperion: IO process example of
extracting 256K vertices’ features in GPU-initiated systems. GIDS occupies
8K thread blocks (100% GPU cores) during IO access, while Hyperion
only needs one thread block (about 1% GPU cores) to submit sufficient IO
commands and 32 thread blocks (about 30% cores) to handle the completion
of IO completion, and needs no cores for IO stack between IO submission
and IO completion. vi represents vertex i and Fi represents its feature.

from SBG and disk IO management in MBG make the CPU
bottleneck even worse.

Figure 3(a) shows the execution time breakdown of Ginex
and MariusGNN4 on the PA [30] dataset by running each
stage serially (We turn on the pipeline support of Ginex and
MariusGNN in the end-to-end comparison, § IV-B). We also
configure them in memory mode, where Ginex-Mem keeps
running SBG including sampling a large batch of neighbors
while MariusGNN-Mem does not execute the SBG. All sys-
tems store topology in memory. Ginex-Mem and MariusGNN-
Mem store all features in CPU memory while Ginex-SSD and
MariusGNN-SSD store all features in SSD. We configure 96
CPU threads and 12× P5510 NVMe SSDs for them. However,
the CPU-managed SBG and MBG take 5-184× more time than
model training (MT) on GPU, leading to low GPU utilization.
These CPU-managed designs overly minimize SSD accesses,
which brings substantial CPU-side data preparation overheads.

2) GPU-managed Out-of-core Systems:
To solve Issue 1, GIDS [56] enables GPU-initiated direct

SSD access based on BaM [60] and utilizes GPU parallelism
without CPU involvement to hide SSD/CPU memory access
latency for MBG. As BaM focuses on array-like thread-
grained programming abstraction for general purposes, it
adopts a synchronous IO design and integrates cache man-
agement inside the IO kernel. We identify that it causes
interference between IO submission and completion, so GIDS
has low training throughput. The concrete issues are twofold:
Issue 2: Failing to maximize disk IO throughput. Fig-
ure 3(b) shows that GIDS achieves low throughput (down to
60%) compared to the maximal disk IO throughput, because
of insufficient parallelism exploited by its design.

4MariusGNN provides an official breakdown mode.

Figure 4(a) shows how GIDS extracts vertices’ features.
GIDS utilizes one GPU IO kernel to handle the whole feature
extraction procedure, in which each warp extracts one vertex’s
feature. The detailed process of the IO kernel consists of four
steps. First, GIDS assigns each warp to look up BaM [60]’s
page cache for one feature reading request ( 1 ). Second, if
getting a cache miss, a leader thread in the warp converts one
request to one NVMe command and submits the command
to a submission queue (SQ) of SSDs ( 2 ). Subsequently, the
leader thread keeps polling completion queues (CQs) of SSDs
until it gets a completion entry of a command ( 3 ). On receipt
of the NVMe commands, SSDs will prepare the feature data
and send them to the designated temporary IO buffer in GPU
memory. After getting the completion entry, all threads in the
warp move features from the temporary IO buffer to the output
feature buffer ( 4 ).

According to the nature of SSDs, the key to maximizing disk
IO throughput is to send enough concurrent NVMe commands.
However, GIDS fails to do so due to two concrete reasons.
First, most of the threads in a warp are not utilized. During
the step ( 1 - 3 ), only one leader thread executes command sub-
mission and completion polling, while all other threads are in a
waiting state. This leads to most threads occupying GPU cores
but doing nothing. Second, due to BaM [60]’s synchronous
IO stack design, each warp can not execute other operations
between the IO submission ( 2 ) and the IO completion polling
( 3 ). As such, each GPU core needs to execute/wait for a large
number of long-latency disk IO processes consisting of serial
IO submission and completion polling. In conclusion, GIDS’s
design allows a limited number of active working GPU cores
and does not fully exploit the computing power of each GPU
core. As illustrated in Figure 4(a), though GIDS launches all
GPU cores for the feature extraction kernel (256K warps, i.e.,
8K thread blocks, 1024 threads in each block, and 100% GPU
core utilization5), it can still hardly reach the maximal disk IO
throughput (See Figure 3(b)).
Issue 3: Almost serial execution of graph sampling, feature
extraction, and model training. Unlike traditional out-of-
core workloads, such as graph BFS, which primarily focus
on optimizing disk IO [2], out-of-core GNN training requires
heavy computational workloads, e.g. graph sampling and
model training, on the GPU. However, GIDS relies on all
GPU cores for initiating disk IO commands, executing graph
sampling, and model training. For example, GIDS launches
kernels with 49K, 10K, and up to 24K thread blocks for
graph sampling, feature extraction, and model training on the
IG [35] dataset, respectively. As a result, each stage leads to
severe GPU core contention issues, resulting in an almost
serial execution of all three stages and thus low training
throughput.

C. Observations and Opportunities

Issues 1-3 indicate that existing systems underestimate the
throughput of SSDs and the parallel power of GPUs for GNN

5Measured with the SM (streaming multiprocessor) Active metric via
NVIDIA NSight Systems [53].



training. Conversely, we have the following observations that
shed light on new optimization opportunities:
Observation 1: Higher NVMe SSD throughput and easier
to add more SSDs. Nowadays, a single PCIe 4.0 NVMe
SSD can achieve more than one million random IOPS and a
bandwidth of 7 GB/s [28], which is not far from the throughput
of accessing CPU memory by GPU (e.g., 24GB/s by PCIe 4.0).
The SSD throughput is continuously increasing [9], [18], [22],
[40], [62], [66], [68], [85]. Furthermore, cloud vendors like
Google Cloud and Amazon Web Service allow adding local
NVMe SSDs [5], [25] for higher IOPS and larger capacity.
In a customized local machine, PCIe expansions like H3
Platform Falcon-4016 [27] can accommodate PCIe devices.
A single PCIe expansion supports adding more than 16 SSDs.
Figure 1(b) shows that adding NVMe SSDs can remarkably
increase TPC in single-machine out-of-core GNN training
and can achieve up to 22× TPC compared to distributed
counterparts.
• Opportunity 1: Adding cheap NVMe SSDs can be a new

optimization dimension to maxmize TPC.
Observation 2: A small proportion of GPU parallelism
is sufficient for saturating SSDs. We examine how much
parallelism on GPU is needed to saturate SSDs (without
IO completion handling). Assume that we have Q NVMe
SSDs, each requiring M IOPS to maximize its IO throughput
under the accessing granularity of K bytes. The GPU PCIe
bandwidth is B bytes/s. Note that the aggregated disk IO
bandwidth is up-bounded by PCIe bandwidth. To fulfill this
requirement, we evaluate the number of parallel threads in a IO
submission kernel. Assume that each thread needs T seconds
to write an NVMe command to the SQs. Equation 2 estimates
the required thread number Ps:

Ps =

{
Q×M × T Q×M ×K < B

B/K × T Q×M ×K >= B
(2)

We implement an IO command submission kernel on an
A100 GPU with PCIe 4.0x16 (B: 24GB/s) and 12 × Intel
P5510 NVMe SSDs each with maximum theoretical 7.5×105

IOPS. We allocate the SQs with 4096 depth in GPU global
memory and batch the doorbell for each SQ so that the
doorbell time can be negligible. As such, the T can be
approximatively regarded as the time that writing warpsize
× 64-byte NVMe commands into GPU memory by a warp.
We measure the time on A100 and get 6.5 us for it. We
show the case under two disk accessing granularities K: 512
bytes (aggregated SSD bandwidth less than PCIe bandwidth)
and 4096 bytes (aggregated SSD bandwidth higher than PCIe
bandwidth). As a result, only 59 threads under 512 bytes and
32 threads under 4096 bytes are needed to saturate 12 × Intel
P5510 NVMe SSDs by A100. In practice, we can allocate
more threads, e.g., 1 thread block with 512 threads (1% GPU
cores on A100) to saturate SSD throughput.
• Opportunity 2: Fully utilizing parallelism of a few, e.g.,

1%, GPU cores makes it possible to saturate SSD access
and overlap IO with computation at the same time without
CPU involvement (Solving Issues 1,2,3).

Figure 5. Hyperion Overview.

Motivated by these opportunities, we argue that co-
optimizing GPU-initiated SSD access and computation
enables us to only add cheap NVMe SSDs for GNN
training, rather than expensive GPU servers, to achieve
in-memory-like throughput and maximal TPC. However,
this is non-trivial due to Challenge 1-3, as discussed in § I.

III. HYPERION DESIGN

We build Hyperion, a cost-efficient general out-of-core
GNN training system on terabyte graphs. We propose three
key novel designs in Hyperion to address the associated chal-
lenges: 1) GPU-initiated pipeline-friendly asynchronous disk
IO stack (Solve Challenge 1, see §III-A), 2) GPU-managed
disaggregated unified cache (Solve Challenge 2, see §III-B),
and 3) GNN-aware TPC-analytical model (Solve Challenge 3,
see §III-C). Figure 5 shows an overview of Hyperion. In the
following, we describe Hyperion’s components and training
workflow:
TPC Optimizer. Hyperion automatically takes GNN tasks,
hardware settings, and graph datasets as inputs and allows
users to configure their budgets to constrain hardware selec-
tion. Hyperion runs a lightweight TPC Profiler during the
first training epoch to collect: 1) vertex hotness6 by pre-
sampling; 2) SSD/PCIe throughput and GNN model computa-
tion throughput to analyze the system TPC by a few, e.g., 10,
training iterations7. Next, Hyperion uses a GNN-aware TPC-
analytical model (See §III-C for more details) to give users
a hint on how to adjust cheap NVMe numbers to achieve
in-memory-like throughput and thus maximize TPC (Solving
Challenge 3).
GPU-initiated Batched GNN Operators. Hyperion performs
GNN computations on the GPU using batched processing
instead of handling individual vertices one at a time. This ap-
proach allows for batched execution of IO operations, helping
to disaggregate asynchronous disk IO kernels, which resolves
Challenge 1. Specifically, graph sampling starts from a batch
of sampling seeds, e.g., training vertices, and samples neighbor

6Used by cache initialization, see §III-B
7Since the batch seeds are randomly shuffled, several iterations exhibit

similar statistical characteristics to an entire epoch.



Figure 6. Hyperion’s Pipeline Runtime for a k-hop, e.g., Two-hop, Graph-
SAGE [29] Training. S, C, B, T , N , and L represent the IO submission, IO
Completion, batch seed generation, model training, neighbor sampling, and
feature lookup, respectively. i represents the mini-batch ID. The superscripts
stand for the hop index for the operator.

vertices by parallel GPU-based sampling [23], [33], [55].
During model training, particularly for feature aggregation
and updates, Hyperion leverages batched message-passing
operations supported by frameworks such as DGL [80] and
PyG [20]. Hyperion implements disk IO kernels (See § III-A)
and cache lookup kernels (See § III-B) in a batched manner.
While batch processing improves throughput, it can lead to
synchronization overhead due to uneven workload distribution
among vertices and PCIe bottlenecks. To address this, Hy-
perion breaks down multi-hop/multi-layer GNN computations
into a fine-grained pipeline, as discussed in the following.
Pipeline Runtime. Figure 6 illustrates the pipeline runtime of
a k-hop GraphSAGE model [29], where i represents the mini-
batch ID. Hyperion overlaps the mini-batch preparation of i
with the mini-batch model training of i-1 (Can be disabled for
models like [88]). To avoid GPU core contention and head-
of-line blocking, Hyperion allocates a minimum GPU SMs
for all MBG operations to achieve maximal throughput, e.g.,
1% SM for IO submission and 11.1% cores for cache lookup
by adjusting grid sizes, and configures rest GPU SMs for
model training kernels by CUDA-MPS [54]. When preparing
the mini-batch i, Hyperion first generates a batch of sampling
seeds Bi on GPU. Then Hyperion executes k-hop neighbor
sampling N1

i ,. . . , Nk
i . Hyperion initiates cache lookup Lk

i

(See §III-B) and IO submission Sk
i (See §III-A) of k-th hop

concurrently when initiating neighbor sampling of (k + 1)-th
hop (Solve Challenge 2). After finishing the cache lookup of
k-th hop, Hyperion initiates IO completion Ci (See §III-A)
corresponding to all IO submissions’ results.

A. GPU-initiated Pipeline-friendly Async. Disk IO Stack

We propose a GPU-initiated pipeline-friendly asynchronous
disk IO stack to solve Challenge 1, as shown in Figure 4(b).
Hyperion disaggregates the IO process into two separate
kernels, namely thread-level parallel IO command submission
kernel and asynchronous IO completion handling kernel. Such
a design has two benefits: 1) only requiring very few (e.g.
1%) GPU cores to submit sufficient IO requests to reach
the maximal disk IO throughput; 2) wasting no GPU cores
between IO submission and IO completion and leaving the
majority of GPU cores for other GNN kernels.

1) Thread-level Parallel IO Command Submission: Hype-
rion proposes a thread-level parallel IO command submission

kernel that fully utilizes threads in each warp to submit
sufficient NVMe commands to SSDs. Hyperion configures
the submission kernel with Ps threads and inputs the SSD
logic block IDs of Ns sampled vertex features as well as
their addresses in the output feature buffer. Each thread in
the kernel processes a batch of IO command submissions
corresponding to Ns

Ps
vertices’ feature extraction. Each thread

generates one NVMe command for each vertex and writes
Ns

Ps
NVMe commands into Ns

Ps
entries in the SQs. During

this process, each thread submits multiple NVMe commands
without waiting for their completion. SSDs are informed to
read the submitted NVMe commands in parallel by batched
SQ doorbells. This IO submission kernel design enables Hy-
perion to parallelize the command submission at thread level,
and thus maximize the utilization of all threads in each warp.
Moreover, binding multiple vertex feature extraction requests
to one thread reduces the total thread number for NVMe
commands, improving GPU core utilization.

2) Asynchronous IO Completion Handling: To avoid the
long completion handling time and waste of GPU cores,
Hyperion proposes an asynchronous IO completion handling
kernel, as shown in Figure 4(b). Hyperion allows users to
determine the time to initiate the IO completion handling
kernel. By default, Hyperion launches the IO completion
handling kernel with Pc threads to process Nc IO completions
at the time when all feature lookup operations are finished. In
the kernel, each warp handles Nc×warpsize

Pc
IO completions.

During one handling operation, one leader thread in each warp
first polls for the completion entry in the CQs. After the leader
thread gets a completion entry, all threads in the warp move
data from the IO stack’s internal temporary buffer to the output
feature buffer in a coalesced manner.

Disaggregating the IO completion handling and the IO
submission can minimize GPU parallelism of polling and thus
leave the majority of GPU cores for other GNN kernels like
graph sampling and feature aggregation. Specifically, the IO
submission kernel is initiated after graph sampling while the
IO completion kernel is only initiated after finishing feature
lookup and before the current batch’s model training starts.
The latency of polling a completion entry and data movement
inside GPU memory is determined by GPU global memory
access latency, which is orders of magnitudes less than disk
IO. As a result, the completion handling kernel can bring
negligible overhead to the overall throughput.

3) Scalability and Generalization of Hyperion’s IO Stack:
Hyperion’s IO stack is general to various hardware. We
evaluate Hyperion’s IO stack on different hardware, e.g., H800
GPU, A100 GPU, Intel P5510 NVMe SSDs, and Samsung 980
pro NVMe SSDs (see §IV-D and §IV-F). In these platforms,
allocating 1% GPU cores is sufficient to saturate SSDs. Due
to the IO disaggregation design, Hyperion can allocate more
GPU cores with less powerful GPU and higher-throughput
SSDs. Hyperion can be extended to a multi-GPU platform
by allocating SQs/CQs on multiple GPUs and maintaining an
individual asynchronous disk IO stack for each GPU.



(a) Breakdown of IG-256 (b) Overall TPC

Figure 7. Impact of the Cache Placement Strategies on GraphSAGE Training.
The GPU cache and CPU cache are configured to 20GB and 40GB while the
SSD number is set to 12. Hybrid placement configures 15GB GPU cache and
35GB CPU cache for features.

B. GPU-managed Disaggregated Unified Cache

Hyperion adopts a GPU-managed disaggregated cache de-
sign to cooperate with the asynchronous IO stack (Solve
Challenge 2). Hyperion utilizes GPU to initialize the cache
placement and issues cache lookups (§III-B1). Hyperion de-
termines the cache contents with an efficient unified static pre-
sampling-based cache policy (§III-B2) to fully utilize CPU-
GPU memory hierarchy.

1) Disaggregated Cache Management by GPU:
Cache Initialization. During system initialization, Hyper-
ion’s TPC-Profiler runs an epoch of pre-sampling by GPU8,
similar to previous work [70], [86], and collects all vertices’
hotness, i.e., access frequency. Subsequently, Hyperion uses
GPU to sort all vertices by their hotness in descending order.
According to our cache placement strategy (§III-B2), Hyperion
fills up the available CPU and GPU memory with the hottest
topology or feature data.
Cache Lookup. During neighbor sampling, Hyperion iden-
tifies the cache hit/miss of vertices’ features and next-hop
neighbors. Subsequently, Hyperion launches next-hop neigh-
bor sampling and feature cache lookup GPU kernels (For
cache hit) that execute in parallel with disk IO kernels (For
cache miss), as shown in Figure 6. GPU kernels directly access
the cached data in CPU or GPU memory by Unified Virtual
Addressing (UVA [46]) in warp-granularity. Multiple threads
in each warp concurrently access coalesced columns of feature
tables or topology tables (in CSR format). Hyperion’s TPC-
Optimizer automatically utilizes a minimum number of GPU
threads in each cache lookup kernel that maximizes cache
lookup throughput. For instance, Hyperion configures 11%
cores on A100 to generate sufficient concurrent outstanding
read requests to saturate PCIe 4.0x16, if assuming access
features only from the CPU cache. During the cache lookup
process, Hyperion does not run cache replacement.

2) Unified Cache Placement Policy:
We propose a unified static cache placement policy to allow

efficient disaggregation of cache and disk IO while fully
utilizing memory hierarchy.
Challenges of Static Cache Policy. Previous work [86] has
shown that pre-sampling-based static caching policy achieves
about 90% – 99% of the optimal cache hit rate in GNN training

8In the process, GPU directly accesses the topology data stored in SSDs.

scenario, making it possible to remove cache replacement. This
is because many real-world graphs are highly skewed [43],
[70], [86]. For example, only 5% hottest vertices dominate
up to 70% total access frequency among all vertices [70].
However, existing static policies [43], [70], [86] only regard
the GPU memory as a cache without consideration of the
entire memory hierarchy or only maintain feature cache.
Fully utilizing the CPU-GPU memory hierarchy and com-
prehensively considering topology and features is non-trivial
due to different dataset distributions and CPU/GPU memory
bandwidth/latency. Specifically, we compare five strategies
for memory allocation: (1-4) filling GPU (G) or CPU (C)
memory with the hottest topology (T) or feature (F) first,
then using the remaining space for the second hottest data
type. For example, GTCF means filling the GPU memory
with the hottest topology, then the hottest feature, followed
by the second hottest feature in the CPU memory. In (1-4),
at least one type of memory is filled by only one type of
data. (5) A hybrid strategy splits both GPU and CPU memory
to store both the hottest and second-hottest topology and
features. Figure 7 illustrates the breakdown of the operation
execution time9 on dataset IG-256 and the overall TPC of four
datasets (see § IV-A). As Figure 7(a) shows, there are trade-
offs between caching topology and feature data, affecting both
feature extraction and graph sampling processes. Figure 7(b)
illustrates that the worst cache placement could degrade the
overall training TPC to down to 52%. Mixing the GPU/CPU
cache both with topology and feature is often the best case
but splitting suitable cache space is hard to manually decide.
Hyperion’s Unified Cache Principle. Hyperion proposes a
unified optimization principle, minimum PCIe transaction, to
comprehensively decide the cache specialization on CPU/GPU
memory. Hyperion splits available GPU and CPU memory
into many small chunks of size Z, e.g., 100 MB. After pre-
sampling, Hyperion sorts vertices according to their topolo-
gy/feature access hotness (similar to previous work [70]) and
gets two order queues QT and QF . Hyperion logically fills
all topology (feature) into a chunk set ST (SF ) in the order
of QT (QF ) by a GPU parallel scan. Note that Hyperion only
records vertices’ IDs in each chunk instead of filling physical
topology/feature into physical memory chunks in this step.
Next, Hyperion decides how to fill physical memory chunks
in the GPU cache, followed by the CPU cache.
GPU Cache Policy. For each logical topology chunk in ST ,
Hyperion evaluates PCIe transactions that it might reduce if
cached in GPU. Specifically, Hyperion calculates transaction
number by ⌈HT

i ×Ni

CLS ⌉ for vertex i and sums up all vertices’
transaction in this chunk, where HT

i , Ni, and CLS represent
topology hotness and neighbor size (in bytes) of vertex i and
the transferred cache line size by PCIe. Similarly, Hyperion
calculates feature transaction by ⌈HF

j ×Dj

CLS ⌉, where HF
j and Dj

represents the feature hotness and the feature vector size (in
bytes) of vertex j. Next, Hyperion uses dynamic programming

9For simplicity, we group all kernels related to graph sampling or feature
extraction into a single operation.



Table I
DETAILED EVALUATION PLATFORMS.

Machine/Cluster A B C (Cluster, Eight Machines)
GPU 80GB-PCIe-A100 80GB-PCIe-H800 80GB-PCIe-A100

SSD 12 × 3.84TB Intel P5510,
6 × 1TB Samsung 980pro 12 × 3.84TB Intel P5510 /

PCIe/Network 4.0x16 5.0x16 3.0x16, 100Gbps

CPU Intel(R) Xeon(R) Gold 5320 CPU
(2 × 52 threads) @ 2.20GHz

Intel(R) Xeon(R) Gold 6426Y CPU
(2 × 32 threads) @ 2.50GHZ

Intel(R) Xeon(R) Silver 4214 CPU
(2 × 24 threads) @ 2.20GHz

CPU Mem. 768GB 512GB 256GB
TCO 48,971 (with 12 × Intel P5510) 78,794 (with 12 × Intel P5510) 45,275 × 8

(DP) to select the chunks with their physical topology or
feature to fill the physical GPU cache chunks so that the
overall PCIe transactions are minimized.
CPU Cache Policy. After filling up the GPU cache, Hy-
perion masks out the GPU chunks and fills up the CPU
cache physically. Similarly, Hyperion calculates PCIe trans-
actions for all residual chunks if accessed from SSDs. For
topology chunks, Hyperion calculates transaction number by
⌈HT

i ×Ni

SSDS ⌉ × SSDS
CLS , where SSDS represents the minimum

SSD access granularity, e.g. 512 Bytes. For feature chunks,
Hyperion calculates transaction number by ⌈HF

j ×Dj

SSDS ⌉× SSDS
CLS ,

where SSDS represents the minimum SSD access granular,
e.g. 512 Bytes. Hyperion adds PCIe transaction numbers from
accessing topology/feature in both CPU memory/SSDs and
minimizes overall PCIe transaction by dynamic programming.

C. GNN-aware TPC-analytical Model

To identify optimal TPC, we propose a GNN-aware TPC-
analytical model that can predict GNN’s TPC under various
combinations of GNN models and hardware (Solve Challenge
3) and provide a hint on how to maximize TPC.
User-configurable Parameters. Hyperion captures the users’
GNN-specific parameters of their training job such as batch
size Bs, GNN layer numbers, and sampling fan out by
default. Hyperion also allows users to limit their overall budget
Coverall and will search for optimal hardware combinations for
them. Additionally, users need to input the prices Cssd of one
SSD and Cmachine of all other hardware except SSDs. The
entire monetary cost of a given system including Q SSDs is
Cssd ×Q+ Cmachine.
Overall TPC Estimation. We define the average mini-batch
execution time as Tbatch. TPC can be calculated by Equation 3:

TPC =
Bs

Tbatch × (Cssd ×Q+ Cmachine)
(3)

As Figure 6 shows, preparing mini-batch i can be overlapped
with the training of mini-batch i− 1 while the SSD access is
overlapped with cache lookup. As such, we calculate Tbatch by
Max(Tssd, Tpcie, Ttrain), which represents the SSD access,
PCIe access, and model computation time, respectively.

Tbatch = Max(Tssd, Tpcie, Ttrain) (4)

TPC Profiling. Next, we estimate Tssd, Tpcie, and Ttrain.
First, TPC Profiler records the average per-batch model
computation time Ttrain. Second, TPC Profiler collects: 1)

the overall PCIe transaction number Nssd/Nmem of reading
SSD/CPU memory (as discussed in § III-B2), 2) per SSD
throughput Thssd, 3) PCIe throughput Thpcie, and 4) cache
lookup overhead α. Hyperion calculates Tssd = Nssd

Thssd×Q +α

and Tpcie = Nssd+Nmem

Thpcie
. Tpcie is the maximal PCIe time to

access all data.
Problem Solving. To address the optimization of system TPC,
Hyperion employs a nonlinear programming (NLP) approach.
The objective is to maximize the system’s TPC. This problem
formulation includes a constraint (optional) that the total cost
does not exceed a predefined budget and the SSD number
does not exceed the maximal available PCIe slots detected by
Hyperion. Hyperion iteratively adjusts Q to find the maximum
of the TPC while respecting the defined constraints.
Hint to Maximize TPC. Hyperion provides users a hint on
how to adjust a single component, e.g., SSD, to maximize TPC
and provides the predicted TPC-pred10. Hyperion allows users
to decide how to adjust hardware if running multiple GNN
models and datasets. Hyperion provides the predicted value of
three metrics Tssd, Tpcie, and Ttrain for a given task to identify
system bottlenecks: 1) SSD bound, 2) PCIe bound, and 3)
GPU bound, which are positively correlated to the optimal
TPC. Thus users can decide their hardware based on these
metrics for more GNN models and datasets.

IV. EVALUATION

A. Experimental Setting

Experimental Platform. Table I illustrates the evaluation plat-
forms including two single machines and one eight-machine
cluster.
GNN Models. We use three sampling-based GNN models:
GAT [75], GraphSAGE [29], and GCN [37]. All models adopt
a 2-hop random neighbor sampling by default. The sampling
fan-outs are 25 and 10. The hidden dimension of GAT is set to
64 and the head number of each layer is set to 8. The hidden
dimensions of GraphSAGE and GCN are set to 256. Similar
to existing work [70], [86], the batch size is set to 8000 by
default. Node classification is used as the GNN task.
Datasets. We conduct our experiments on multiple real-
world graph datasets with various scales. Table II shows the
dataset characteristics. The Paper100M (PA) is available in
Open Graph Benchmark [30]. The IGB-HOM (IG) is from
the IGB dataset [35]. The UK-2014 (UK), and Clue-web (CL)

10If users provide multiple types of SSDs or GPUs, Hyperion can also give
a hint on which combinations of hardware are more cost-efficient.
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Figure 8. End-to-end Throughput of Hyperion, GIDS, MariusGNN, and Ginex.

Table II
DETAILED INFORMATION OF DATASETS

Dataset PA IG UK CL LD
Vertices Num. 111M 269M 0.79B 1B 5.6B
Edges Num. 1.6B 4B 47.2B 42.5B 10B
Topo. Size 14GB 34GB 384GB 348GB 125GB
Feat. Dim. 128 1024 1024 1024 1024
Feat. Size 56GB 1.1TB 3.2TB 4.1TB 23TB

are from WebGraph [10]–[13]. The LDBC-SNB-Bi-SF3000
(LD) is available at the LDBC social network benchmarks [6].
Because UK, CL, and LD have no feature, we manually
generate the features with the dimension specified as 1024,
following IG’s setting. Similar to [86]’s setting, we randomly
choose 1% of vertices from each graph as training vertices.
We also adapt the feature dimension of PA, IG, and UK for
experiments in section III-B2 IV-B and IV-C. We mark these
variants as Name-Dimension. For instance, PA-1024 refers to
a variant of PA whose feature dimension is 1024.
Baselines. We use the state-of-the-art out-of-core GNN
systems, Ginex [57], MariusGNN [78] and GIDS [56] and
distributed system DistDGL [100] as the baseline systems.

B. Comparison of End-to-end Throughput

Comparing to Out-of-core Baselines. We compare the
throughput of Hyperion with all out-of-core three base-
lines [56], [57], [78] in machine A. We report the average
training epoch time of all compared systems on all datasets
in Table II and three GNN models, as illustrated by Figure 8.
We use 12 P5510 SSDs [65] to store the datasets. We set
the number of CPU threads to 96 for CPU-managed baselines
Ginex and MariusGNN.

We first examine the average epoch time of each system
on terabyte-scale datasets (IG, UK, CL, LD). We observe
that Hyperion outperforms GIDS by up to 3.1×. Moreover,
GIDS runs out of GPU memory on larger UK, CL, and LD
datasets, because BaM [60] requires over 80GB metadata
in the page cache design. MariusGNN runs out of memory
due to large memory consumption during pre-processing on
these datasets. Compared to CPU-managed baseline Ginex,
Hyperion achieves over 167× speedup.

On the smallest dataset PA, all systems can store all
topology and features in CPU memory. In this case, Hyperion
outperforms GIDS, MariusGNN, and Ginex by up to 2.3×,
15.9×, and 68×, respectively, indicating Hyperion still has
superior throughput on small graphs.

(a) GraphSAGE (b) GCN

Figure 9. Epoch Time: Hyperion vs. In-memory System Legion.

Comparing to In-memory System. We compare Hyperion
with SOTA in-memory system Legion [70] to show that
Hyperion can achieve in-memory-like training throughput by
adding cheap NVMe SSDs. We evaluate in machine A with
12× P5510 SSDs. We report two GNN models due to space
limitations. We evaluate on four large-scale datasets in Table II
of up to 700 GB by adapting the feature dimension under the
constraint of CPU memory (768 GB). For example, PA-1024
represents adapts the feature dimension of original PA datasets
to 1024. For both systems, we fill all the available GPU mem-
ory as the cache. Hyperion only utilizes 128 GB CPU memory
as the cache while Legion stores all the feature/topology data
in CPU memory.

Figure 9 illustrates the average epoch time of Hyperion
compared to Legion. We observe that Hyperion can achieve
88%~97% throughput of Legion with both GNN models,
indicating that out-of-core training with Hyperion can achieve
close training throughput to in-memory systems.

C. Comparison of End-to-end TPC

We compare the end-to-end throughput and TPC of Hyper-
ion with out-of-core and distributed baselines11. We calculate
the TPC based on five-year TCO (See § VI and Table I).
Hyperion and GIDS run on machine A with 12 P5510 SSDs
and DistDGL runs on cluster C using 8 machines. As DistDGL
requires CPU to execute distributed sampling, we maximize
the CPU thread number per machine to 48. We measure the
network utilization of DistDGL by Intel PCM [32] and find
that DistDGL only reaches 20Gbps peak network throughput
so DistDGL would not be bottlenecked by the PCIe 3.0
bandwidth of cluster C. Because DistDGL runs out of memory
on IG due to memory overhead (we find DistDGL allocates

11For out-of-core baselines, we only the report GIDS because Figure 8
proves Ginex and MariusGNN are significantly slower than GIDS and
Hyperion in the same machine.
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Figure 10. End-to-end Throughput and TPC of Hyperion, GIDS, and DistDGL. X-Thr and X-TPC present the system throughput and TPC, respectively.

(a) GraphSAGE (b) GCN (c) GAT
Figure 11. Impact of Deep GNN-aware Pipeline.

about 5× memory compared to the original dataset size), we
also evaluate IG-256 whose feature dimension is 256.

Figure 10 demonstrates that Hyperion outperforms the TPC
of GIDS by up to 7.7× and outperforms DistDGL by up to
60×, indicating that Hyperion can maximize TPC for GNN
training. Hyperion achieves higher throughput than DistDGL
because DistDGL’s CPU-based distributed graph sampling is
less efficient than GPU-based sampling in Hyperion [23],
[59], [86]. Though DistDGL can achieve higher throughput
than Hyperion with more machines, the TPC of DistDGL can
hardly increase because the monetary cost grows linearly with
machine number. We evaluate on the PA dataset using the three
GNN models and observe that the throughput of DistDGL
scales nearly linearly with 1 to 8 machines, reaching 87%
of Hyperion’s throughput when using 8 machines. Though
DistDGL would achieve higher throughput than Hyperion with
over 8 machines, Hyperion can consistently outperform the
TPC of DistDGL by over 18×.

D. Impact of Hyperion’s Disk IO Stack

In this experiment, we evaluate the effect of GPU-initiated
pipeline-friendly asynchronous disk IO stack. There are three
evaluation metrics: 1) the impact of our IO stack on the GNN
pipeline, 2) the achieved disk IO throughput, and 3) the used
ratio of GPU computation resources of our design.

1) Impact on the GNN Pipeline:
To examine the impact of Hyperion’s pipeline-friendly asyn-
chronous IO stack on the GNN pipeline, our comparison
introduces Hyperion-NoPipe that launches all GPU cores for
all stages in the GNN training process and executes all
GPU-initiated operators in a serial order. We conduct the
experiments on machine A with 12 P5510 SSDs.

Figure 11 illustrates the comparison results under three
GNN models and all datasets. We observe that Hyperion out-
performs Hyperion-NoPipe by up to 1.74× on GraphSAGE, up
to 1.39× on GCN, and up to 1.23× on GAT, because Hyperion
can overlap GNN computation and disk IO accesses.

(a) IO Throughput w.r.t SSD Num-
ber, Dimension = 1024, P5510

(b) IO Throughput w.r.t Feature Di-
mension, 12 SSDs, P5510

(c) IO Throughput w.r.t SSD Num-
ber, Dimension = 1024, 980pro

(d) IO Throughput w.r.t Feature Di-
mension, 6 SSDs, 980pro

Figure 12. Comparison of Overall IO Throughput and GPU Core Utilization
of Hyperion and GIDS. Hyperion-[x,y] represents utilizing x and y thread
blocks for the IO submission and completion kernels, respectively. GIDS-8K
means that GIDS utilizes 8K thread blocks for the IO kernel.

2) Achieved IO Throughput and GPU Utilization:
Experimental Setting. We examine the achieved disk IO
throughput and the used ratio of GPU computation resources
on machine A with two different kinds of SSDs, i.e., Intel
P5510 and Samsung 980pro. GIDS exhausts all GPU cores for
IO kernels (8K thread blocks, 1024 threads per block, 100%
GPU core utilization). For a fair comparison, Hyperion starts
the IO completion kernel immediately after the IO submission
kernel and records the IO throughput for the overall process.
For the IO submission kernel, we set the GPU thread block
number to 1 and 128, which is about 1% and 100% GPU core
utilization. For the IO completion kernel, we set the thread
block number to 32 and 128, which is about 30% and 100%
GPU core utilization, respectively. On P5510 (or 980pro), we
fix the feature dimension to 1024 and vary the SSD numbers



(a) Impact of CPU Cache on Epoch
Time

(b) Impact of CPU Cache on GPU
PCIe Throughput

(c) Impact of GPU Cache. (d) Impact of Topology Cache.

Figure 13. Impact of Unified Cache.

from 1 to 12 (or 6), as shown in Figure 12(a) (or Figure 12(c)).
Besides, we fix the SSD number to 12 (6) and vary the feature
dimension from 128 to 1024, as illustrated by Figure 12(b) (or
Figure 12(d)).
Overall IO Throughput. Figure 12 shows that Hyperion’s IO
stack outperforms GIDS’s IO stack under different numbers of
SSDs and feature dimensions, because the Hyperion’s IO stack
design can submit sufficient parallel IO requests to maximize
the disk IO throughput, as discussed in § III-A. As shown
in Figure 12(a), the IO throughput of Hyperion from 6 to 12
SSDs is almost the same due to the saturation of PCIe 4.0.
GPU Core Utilization. Figure 12 also proves that Hyperion
only needs 1 thread block (1% GPU cores) for IO submission
kernels to achieve a comparable IO throughput with 128 thread
blocks (all GPU cores). Meanwhile, the IO completion kernel
only needs 32 thread blocks (30% GPU cores) to reach an
almost maximal throughput. The slight overhead is the data
movement from the IO stack’s internal buffer to the output
feature buffer. In conclusion, the IO stack design enables
Hyperion to maximize the disk IO throughput while leaving
the majority of GPU cores for other useful GNN kernels, rather
than waiting for the completion of IO commands.

E. Impact of Hyperion’s Cache

Hyperion proposes a unified cache that takes topology/fea-
ture and CPU/GPU memory into account. We evaluate the
impact of components in the unified cache: CPU cache, GPU
cache, and topology cache.
Impact of CPU Cache. To illustrate the impact of CPU
cache, we propose two implementations: Hyperion-CPUCache
and Hyperion-NoCache. Hyperion-CPUCache reads features
from both the CPU cache and SSDs, while Hyperion-NoCache
reads features only from SSDs. We disable GPU caches and
maintain CPU cache for all graph topology data in both
implementations. We use all the available CPU memory for

(a) TPC w.r.t. SSD number (b) TPC w.r.t. Cache Size

Figure 14. Case Study of IO bound.

the CPU feature. Figures 13 show the evaluation results on
a terabyte-scale CL dataset (4.1TB). We vary the number
of P5510 SSDs from 2 to 12. Figure 13(a) illustrates that
Hyperion-CPUCache outperforms Hyperion-NoCache by up
to 1.73× and maintains a stable throughput even with only
two SSDs. The underlying reason is that Hyperion-CPUCache
reaches the maximal PCIe throughput under different numbers
of SSDs, as shown in Figure 13(b).
Impact of GPU Cache. We examine the impact of GPU cache
on different datasets with 12× P5510 SSDs. The GPU cache
sizes are set to all the GPU memory except other GPU buffers
like the GNN model and mini batch buffers while the CPU
cache is set to all the available CPU memory. Figure 13(c)
illustrates that Hyperion with GPU cache (Hyperion) can
achieve speedup up to 1.48×, compared to Hyperion without
GPU cache.
Impact of Topology Cache. We examine the impact of the
topology cache. We use 12× P5510 SSDs. We compare Hy-
perion to Hyperion-NoTopoCache. For both systems, we use
all the available GPU/CPU memory for cache. For Hyperion-
NoTopoCache, we fill the CPU cache with feature data and
access topology data from SSDs. Figure 13(d) illustrates that
Hyperion outperforms Hyperion-NoTopoCache by up to 1.1×
because accessing topology data from SSDs incurs more IO
amplification compared to features.

F. Validation of TPC-analytical Model

We validate the predicting accuracy of the TPC-analytical
model on various hardware combinations and different GNN
models. We comprehensively examine the TPC-prediction
under IO bound cases and computation bound cases.
Case study: IO Bound. We examine the TPC of GraphSAGE
training on machine A with 1 to 12 P5510 SSDs and 2 to
6 980pro SSDs. In this series of experiments, GraphSAGE
model training can be overlapped with PCIe IO, representing
IO-bound cases of GNN training. First, we fix the GPU/CPU
cache sizes to 40GB/20GB and report the predicted/evaluated
TPC with different numbers of SSDs. Figure 14(a) demon-
strates that Hyperion can precisely predict the TPC with
different SSD numbers and can find the optimal numbers of
SSDs that maximize the TPC. Second, we fix the GPU cache
size and vary the CPU cache from 20 to 80 GB. Under each
cache setting, Hyperion will predict an optimal number of
SSDs that maximizes TPC and we also manually evaluate
the optimal number of SSDs. Then we compare the predicted
optimal TPC under Hyperion’s suggestion to the manually



(a) Machine A, PCIe 4.0, A100 (b) Machine B, PCIe 5.0, H800

Figure 15. Case Study of Computation Bound. TPC of GAT model with
Various Model Sizes on Machines A and B.

evaluated optimal TPC in each cache setting. Figure 14(b)
shows that Hyperion can select a suitable number of SSDs
that achieves over 90% TPC to the evaluated ones.
Case Study: Computation Bound. We examine the TPC of
GAT training on machines A and B. We use 12× P5510 SSDs
in both machines. We vary the model sizes of GAT, i.e., hidden
dimensions, from 32 to 256. From hidden dimensions 64 to
256, the GNN training is bounded by the model computation.
We report two datasets: PA and IG. Figure 15 shows that
Hyperion can precisely predict the TPC in different machines
with different GPUs and PCIe throughput.

V. RELATED WORK

Large-scale GNN Systems. Distributed systems [19], [21],
[26], [41], [44], [58], [67], [69], [73], [79], [81], [82], [84],
[89], [90], [93], [94], [96], [98]–[101], [103] leverage expen-
sive multiple machines’ host memory and GPU memory to
store large-scale graphs. Existing out-of-core systems [56],
[57], [78] use SSD to achieve cheap training but have low
training throughput due to CPU overhead or GPU core con-
tention. OUTRE [63] proposes batch construction and histor-
ical embedding cache to reduce data redundancy. In contrast,
Hyperion fully overlaps the GNN pipeline and SSD access,
achieving the highest TPC and accurate training.
GPU Direct SSD Access with CPU Involvement. Existing
works [8], [15], [34], [38], [47], [61], [74], [95] rely on CPU to
initiate or trigger SSD access and enable direct GPU-SSD data
transfer using the GPUDirect [52] technology. Systems [64],
[76] enable GPU to send SSD access requests on demand and
rely on CPU to initiate/trigger SSD access but do not support
GPUDirect [52]. However, the involvement of the CPU in
the control path leads to high CPU-GPU synchronization
overheads, I/O traffic amplification, and long CPU processing
latencies [60]. These overheads especially make it hard to
saturate SSD throughput for data-dependent, irregular, and
fine-grained access patterns of graph workloads.
GPU Direct SSD Access without CPU Involvement.
BaM [60] proposes GPU-initiated on-demand direct SSD
access without CPU involvement. However, BaM’s design
introduces new GPU core contention issues, failing to overlap
IO with computation. In contrast, Hyperion’s asynchronous IO
stack only requires 1% GPU cores to saturate SSDs and allow
IO/computation overlap.
Cache-enabled GNN Systems. Many prior systems [31],
[43], [44], [49], [56], [57], [59], [70], [72], [86], [97] have

explored cache design to accelerate GNN training. Some of
them [44], [56], [57] propose dynamic cache design, which
faces challenges for asynchronous IO design due to cache/IO
interference. Others [43], [49], [59], [70], [86], [97] adopt
static cache design but do not take the entire CPU-GPU
memory hierarchy to cache both topology and features. Some
other out-of-core systems [39], [51], [77] utilize the entire
memory hierarchy to minimize PCIe transactions but do not
focus on GNN training. In contrast, Hyperion disaggregates
cache from disk IO and fully utilizes the entire memory
hierarchy by considering the GNN access pattern to minimize
PCIe transactions for out-of-core GNN training.

VI. CALCULATION OF MONETARY COST

Table I shows the estimation of the 5-year total cost of
ownership (TCO) of a local machine/cluster. The overall TCO
is estimated as Equation 5, where Cmac, Cgpu, Cssd and
Cele represent the cost of a single host machine, GPU, and
SSD, and the electricity per machine. Ngpu, Nssd, and Nmac

represent the number of GPUs and SSDs per host machine
and the number of host machines. We provide the cost of each
individual component. Cmac is estimated as $14,098 using the
price of machine A collected from its provider [71]. For the
electricity cost (Cele), we estimate the electricity price to be 10
cents per kWh and the power consumption of a single machine
to be 4,000 Watts, assuming the machine runs GPU workloads
continuously in its lifecycle ($17,000 in total). The prices of
GPUs and SSDs are gathered from Amazon [3], [4]. The prices
(Cgpu) of an 80GB A100 and H800 PCIe GPU are $14,177
and $44,000. The prices (Cssd) of a P5510 and 980 pro SSD
are $308 and $100. Though the absolute number of costs
could vary over time and location, a single component,
e.g., SSDs, can be much cheaper than an entire machine.

TCO = (Cmac+Cgpu×Ngpu+Cssd×Nssd+Cele)×Nmac

(5)

VII. CONCLUSION

In this work, we argue that co-optimizing GPU-initiated
asynchronous SSD access and GNN computation pipeline
enables us to only add cheap NVMe SSDs, rather than
expensive GPU servers, to achieve in-memory-like throughput
and thus maximal TPC of GNN training. We propose Hype-
rion, the first to propose a GPU-initiated asynchronous disk
IO stack with pipeline-friendliness without CPU involvement
and the first to propose the GPU-managed, disaggregated,
unified cache for out-of-core GNN training. We propose the
TPC-analytical model to guide users on how to select their
hardware with a limited budget. Hyperion is open sourced at
https://github.com/RC4ML/Hyperion.
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